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(A) Schematic representation of Dscam gene, mRNA, and protein. The Dscam protein contains both constant and variable domains. The variable domain
are encoded by alternative exons. Each block of alternative exons is indicated by a different color. A transcript contains only one alternative exon from 
each block. The Dscam gene encodes 12 alternative exons for the N-terminal half of Ig2 (red), 48 alternative exons for the N-terminal half of Ig3 (blue), 
and 33 alternative exons for Ig7 (green). There are two alternative transmembrane domains (yellow).

Alternative Splicing of Dscam Potentially Generates 
38,016 Isoforms DSCAM: Down syndrome cell adhesion molecule
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A Model for Dscam-Mediated Interactions
(A) Schematic representation of homophilic binding mediated by the three variable Ig domains. The eight 

N-terminal Ig domains (circles) are shown. Constant Ig domains are gray, and variable Ig domains are in 

color. The remainder of the protein is represented by a gray rectangle. Isoforms sharing identical variable 

Ig domains (represented by matching colors) bind to each other, while isoforms differing in only one 

variable Ig domain (gray arrowheads) do not. We propose that each variable Ig domain binds to the same 

variable Ig domain in an opposing molecule. As isoforms sharing any two identical variable Ig domains do 

not bind or exhibit reduced binding relative to binding between identical isoforms, it is likely that the 

binding of all three variable Ig domains is required to stabilize otherwise weak interactions between 

individual variable Ig domains. (B) Schematic representation of Dscam-mediated interactions between 

neurites. We propose that differences in levels of Dscam signaling influence the nature of the interactions 

between neurites. High levels of signaling between neurites expressing the same array of Dscam isoforms 

result in contact-dependent repulsion (left panel), while low levels of signaling between neurites 
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The miRNA processing pathway has long been viewed as linear and universal to all mammalian miRNAs. This canonical maturation includes the production of the primary miRNA transcript (pri-miRNA) by 
RNA polymerase II or III and cleavage of the pri-miRNA by the microprocessor complex Drosha–DGCR8 (Pasha) in the nucleus. The resulting precursor hairpin, the pre-miRNA, is exported from the nucleus by
Exportin-5–Ran-GTP. In the cytoplasm, the RNase Dicer in complex with the double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to its mature length. The functional strand of the mature
miRNA is loaded together with Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), where it guides RISC to silence target mRNAs through mRNA cleavage, translational repression or 
deadenylation, whereas the passenger strand (black) is degraded. In this review we discuss the many branches, crossroads and detours in miRNA processing that lead to the conclusion that many different ways 
exist to generate a mature miRNA.



mRNA post-translational regulation by miRNA



Structure of Eukaryotic Genes
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Splice-site prediction

Good splice-site prediction implies understanding 
of its recognition by the spliceosome. 

Splice-site predictor/classifier: The Mouse-trap 
of bioinformatics ?

Predictors generally improve with more data.

SpliceRack is the result.



HPRT1 Exon-Intron Structure



AA TGACCAGTCA ACAGGGGACA TAAAAGTAAT TGGTGGAGAT GATCTCTCAA CTTTAACTGG AAAG

GATATAATT GACACTGGCA AAACAATGCA GACTTTGCTT TCCTTGGTCA GGCAGTATAA TCCAAAGATG GTCAAGGTCG CAAG



Pseudo 5' Splice Sites and 3' Splice Sites



Authentic 5' Splice Sites and 3' Splice Sites



SpliceRack
Largest and more thoroughly curated collection of 
splice sites.

Allows exploration of splice sites in 5 genomes (H. 
sapiens, M. musculus, D. melanogaster, C. elegans, A. 
thaliana). 

Uses new methods of classifying splice sites into the 
four categories. 

Identified rare non-canonical sites, conserved in several 
species.

Offers a platform for further genomic exploration.

Sheth et. al., NAR, 2006, http://katahdin.cshl.org:9331/SpliceRack



Characterizing the Splice sites

U2: GT_AG 5’ss: Consensus Motif  CAG GTAAGT 

0.334 0.362 0.185 0.119
0.637 0.107 0.115 0.141
0.099 0.027 0.805 0.069
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000
0.597 0.027 0.350 0.026
0.699 0.071 0.119 0.111
0.089 0.054 0.782 0.075
0.181 0.149 0.193 0.477
0.296 0.194 0.295 0.215
0.226 0.250 0.237 0.287
0.224 0.262 0.242 0.272
0.227 0.238 0.255 0.280
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5’ ss 3’ ss
Position Weight Matrices

5’ is snRNA-mRNA binding, while 3’ is protein-mRNA 
binding, less sequence-specific.



The weight matrix reflects U1-snRNP  5’ splice-site 
binding

One reason for prediction failure

U1 snRNA  GUCCAUUCA
Exon|Intron

CAGGTAAGT
| | | | | | | | |rank 10 site

U1 snRNA  GUCCAUUCA
rank 1 site   CAGGTGAGG

| | | | | | |

Exon|Intron

3 5



Summary I
Collections of splice sites give useful information 
about the splicing machinery.

5’ donor sites show ancient origins, while 3’ 
acceptor sites show shuffling between U2 and 
U12 types.

Weight matrices can explain many features of 
splice sites, but not all.



Observed frequency  = O(-3T,-1A) = 2537

Expected frequency  = E(-3T,-1A)

    = p(-3T) × p(-1A) × N(5’ss)

    = 0.1192 × 0.0995 × 183682

    = 2178.11

Correlation = (Obs. freq. – Exp. freq)/Exp. Freq = 0.164

T    A   G  T  A  A  G  T

-3-2-1   1   2  3  4   5  6

A

2-pt correlation is a natural extension.

Only feasible at the 5’ss GT-AG-U2 type
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Maximum

2.397

Minimum 
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-0.329

Median
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Original Correlation (-3T,-1A) = 0.164     ≈      0.403 on transformed scale 

Color-Scheme for Correlations



Two nucleotide correlation in H. sapiens

-3T,-2A

5C,6C

Positions 1 and  2 are Invariant (IV)



H.sapiens M.musculus

D.melanogaster C.elegans A.thaliana



Cross-species dinucleotide correlations H.sapiens

H.sapiens

M.musculusD.melanogasterC.elegans          A.thaliana       

M.musculus

M.musculusD.melanogaster

D.melanogaster

D.melanogaster A.thaliana         

C.elegans          

C.elegans         A.thaliana         



Are the correlations relevant ?

Second-order effect, probably visible only in 
weak splice sites.

Context is important in splicing, experiments 
difficult to perform. But Nature provides us with 
two examples

Mutations - sporadic changes that cause 
disorders. 

SNPs - Single Nucleotide Polymorphisms, natural 
differences at single positions in the DNA 
between people.



+3 A-->G mutation in disease

+exon3
-exon3

C        P

In collaboration with Brage S. Andresen’s lab
Research Unit for Molecular Medicine and Institute of Human Genetics, 

Aarhus University, Aarhus, Denmark

Madsen et al., HG, 2006

SBCADD: Autosomal recessive disorder of L-Isoleucine catabolism

exon 3
+3A

+3G

SBCAD gene:
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Use of splice-site database and tools

We do better than many machine-learning based 
approaches.
We cannot ab-initio predict good splice sites
BUT, we can tell when a splice-site change will 
be deleterious, and have explained several rare-
genetic disorders using our splice-site database.
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Muscular Dystrophy

•Genetic Disorder leading to muscle wasting
•Defects in Dystrophin, helps connect 
cytoskeleton of muscle fibre to the 
surrounding ECM.
•on X, 2.6MB gene, 97 exons, 16 hours to 
transcribe, mRNA is 14kb, protein 3500



SMA is caused by the homozygous loss of the survival of 
motor neuron 1, telomeric (SMN1) gene; either by deletion or 
rarely by mutation. Leads to death of affected patient, in 
childhood.

Spinal Muscular Atrophy (SMA)

Humans have a paralogue gene called SMN2, also on chromosome 
5, which differs from SMN1 by 11 nucleotides but has an identical 
coding sequence. One of the nucleotide changes between SMN1 
and  SMN2 genes is a C-to-T transition within exon 7, and although 
it is a synonymous change, it weakens the 3′ splice site, resulting in 
skipping of exon 7. Some good transcripts are made. Can you make 
SMN2 take over the role of SMN1 ?



Mechanism of action of an antisense drug that modulates SMN2 splicing. 

Rigo F et al. J Cell Biol 2012;199:21-25

© 2012 Rigo et al.



What is RNAi ?
•RNA interference.
•Mechanism for gene regulation. 
•PTGS (non-coding genes, miRNAs).
•TGS (epigenetic modifications).
•Silencing of transposons, stem-cell 

differentiation etc. Other components of 
the pathway (e.g. piRNAs)



Non-coding silencing genes

let-7 genes in several species let-7 binding sites in  3’ UTR 
of C.elegans lin-41  
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The Piwi family



A small RNA library from mouse

Lots of sequences from a few miRNAs



A small RNA library from mouse germline

Lots of sequences from a millions of piRNAs
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miRNA Targeting rules



Gurtowski J, Cancio A, Shah H, Levovitz C, George A, Homann R, Sachidanandam R. 

Geoseq: a tool for dissecting deep-sequencing datasets. 
BMC Bioinformatics.2010 Oct 12;11:506. PubMed PMID: 20939882; 



Signature of 
correctly 
annotated 
miRNA

Signature of 
mis-annotated 

miRNA

Gurtowski J, Cancio A, Shah H, Levovitz C, George A, Homann R, Sachidanandam R. 

Geoseq: a tool for dissecting deep-sequencing datasets. 
BMC Bioinformatics.2010 Oct 12;11:506. PubMed PMID: 20939882; 
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Protocol to prepare  small 
RNAs for deep-sequencing

Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 

Identification and remediation of biases in the activity of RNA ligases in 
small-RNA deep sequencing.
Nucleic Acids Res. 2011 Nov;39(21):e141. Epub 2011 Sep 2.
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Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 

Identification and remediation of biases in the activity of RNA ligases in 
small-RNA deep sequencing. 
Nucleic Acids Res. 2011 Nov;39(21):e141. Epub 2011 Sep 2.

Different adaptor sequences give different results from the same sample



43

Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 

Identification and remediation of biases in the activity of RNA ligases in 
small-RNA deep sequencing.
Nucleic Acids Res. 2011 Nov;39(21):e141. Epub 2011 Sep 2.

A gel-shift to show 3’-adapter  ligations to a synthetic construct depend 
on sequence of the adapter   
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Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 

Identification and remediation of biases in the activity of RNA ligases in 
small-RNA deep sequencing.
Nucleic Acids Res. 2011 Nov;39(21):e141. Epub 2011 Sep 2.

Modeling the ligation efficiency and  
experimental verification of the model
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Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 

Identification and remediation of biases in the activity of RNA ligases in 
small-RNA deep sequencing. 
Nucleic Acids Res. 2011 Nov;39(21):e141. Epub 2011 Sep 2.

Most variability comes from  the 
2 nucleotides at the adapter’s 

ligating ends
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Jayaprakash AD, Jabado O, Brown BD, Sachidanandam R. 

Identification and remediation of biases in the activity of RNA ligases in 
small-RNA deep sequencing.
Nucleic Acids Res. 2011 Nov;39(21):e141. Epub 2011 Sep 2.

Final improved protocol for 
unbiased small RNA sequencing

Use of random-ends (N’s) on the adapter averages biases 
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unpublished

Measurement of  dme-mir-6 from early drosophila embryos in 
various experiments over the years.

mod-ENCODE data is inconsistent with other data

Three instances of dme-miR-6 in drosophila genome 
from the same cluster
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unpublished

Correct distribution of miRNAs is restored using our new protocol
with randomized adapter ends 

miRNAs from mir-6 cluster



Liver specific miRNA in humans, 
miR-122 

mir-122 expression is controlled by the circadian rhythm

mir-122 hairpin

mir-122 expression is liver-specific

mir-122 mature sequences.



Curing hepatitis-C

Hep-C virus binds to mature miR-122 and uses that 
to enhance its replication

Blocking this binding is one way to halt infection and 
effect a cure





Inhomogenous coverage of exons

How do you assign a number to the expression level 
of a gene from such inhomogenous data ?



From Gene Ontology, a portion of the biological process ontology describing DNA
metabolism. Note that a node may have more than one parent. For example, DNA
ligation has three: DNA-dependent DNA replication, DNA repair and DNA recom-
bination.  This is a directed acyclic graph (DAG).

Gene Ontology (GO)  

•GO organizes the genes in hierarchies, according to function. 
•Changes in expression levels are used to identify branches or pathways in 
GO that are affected in the experiment

Gene Ontology : http://www.geneontology.org/



Graphical display of affected terms

Shows the 
branches that are 

up (green) or down 
(red) in the 
experiment 



GO Enrichment:
Gene Ontology allows the genes to be 
mapped to processes via gene 
products. For a given list of genes 
(selected via any class comparison 
like SAM etc.), the GO processes that 
are enriched in it can be identified. 
There are standard tools like DAVID 
that perform these functions. A 
hypergeometric test can be used to 
test for GO term enrichment. 

Bayesian Networks.
Causality relations can be derived 
from data and modeled using 
bayesian networks.

e 

t 



Heat Maps

•A matrix with genes in the rows and experiments in the columns
•Colors represent values relative to mean
•Visually striking patterns can be detected, especially by organizing 
rows and columns, using clustering methods (shown in the next slide)



Heat maps with clustering of rows and 
columns

Patterns in the colors show groups of 
genes/experiments that are co-regulated
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