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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33

from Anderson et al. ’12

SDSS-III (BOSS)
power spectrum.

Galaxy surveys ≃
matter density fluctuations,
biasing and redshift space
distortions.
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Introduction

The observed Universe is well approximated by a ΛCDM model,
ΩΛ ≃ 0.72, Ωm = Ωcdm +Ωb ≃ 0.28, Ωb ≃ 0.04.20 L. Anderson et al.

Figure 18. BAO in the power spectrum measured from the reconstructed
CMASS data (solid circles with 1� errors, lower panel) compared with un-
reconstructed BAO recovered from the SDSS-II LRG data (solid circles
with 1� errors, upper panel). Best-fit models are shown by the solid lines.
The SDSS-II data are based on the sample and power spectrum calculated in
Reid et al. (2010) and analysed by Percival et al. (2010); it has been shifted
to match the fiducial cosmology assumed in this paper. Clearly the CMASS
errors are significantly smaller than those of the SDSS-II data, and we also
benefit from reconstruction, reducing the the BAO damping scale.

Figure 19. A plot of the distance-redshift relation from various BAO mea-
surements from spectroscopic data sets. We plot D

V

(z)/r
s

times the fidu-
cial r

s

to restore a distance. Included here are this CMASS measurement,
the 6dF Galaxy Survey measurement at z = 0.1 (Beutler et al. 2011), the
SDSS-II LRG measurement at z = 0.35 (Padmanabhan et al. 2012a; Xu
et al. 2012; Mehta et al. 2012), and the WiggleZ measurement at z = 0.6
(Blake et al. 2011a). The latter is a combination of 3 partially covariant data
sets. The grey region is the 1 � prediction from WMAP under the assump-
tion of a flat Universe with a cosmological constant (Komatsu et al. 2011).
The agreement between the various BAO measurements and this prediction
is excellent.

Figure 20. The BAO distance-redshift relation divided by the best-fit flat,
⇤CDM prediction from WMAP (⌦

m

= 0.266, h = 0.708; note that
this is slightly different from the adopted fiducial cosmology of this paper).
The grey band indicates the 1 � prediction range from WMAP (Komatsu
et al. 2011). In addition to the SDSS-II LRG data point from Padmanabhan
et al. (2012a), we also show the result from Percival et al. (2010) using a
combination of SDSS-II DR7 LRG and Main sample galaxies as well as
2dF Galaxy Redshift Survey data; because of the overlap in samples, we
use a different symbol. The BAO results agree with the best-fit WMAP
model at the few percent level. If ⌦

m

h2 were 1 � higher than the best-
fit WMAP value, then the prediction would be the upper edge of the grey
region, which matches the BAO data very closely. For example, the dashed
line is the best-fit CMB+LRG+CMASS flat ⇤CDM model from § 9, which
clearly is a good fit to all data sets. Also shown are the predicted regions
from varying the spatial curvature to ⌦

K

= 0.01 (blue band) or varying
the equation of state to w = �0.7 (red band).

place the acoustic peak at other nearby locations and particularly
at smaller scales is rejected at 8 �.

Fig. 18 repeats this comparison with the power spectrum from
the SDSS-II LRG analysis presented in Reid et al. (2010) and Per-
cival et al. (2010). This analysis did not use reconstruction, but one
can see good agreement in the BAO and significant improvement
in the error bars with the CMASS sample.

In Fig. 19, we plot D
V

(z) constraints from measurements of
the BAO from various spectroscopic samples. In addition to the
SDSS-II LRG value at z = 0.35 (Padmanabhan et al. 2012a) and
the CMASS consensus result at z = 0.57, we also plot the z =

0.1 constraint from the 6dF Galaxy Survey (6dFGS) (Beutler et al.
2011) and a z = 0.6 constraint from the WiggleZ survey (Blake
et al. 2011a). WiggleZ quotes BAO constraints in 3 redshift bins,
but these separate constraints are weaker and there are significant
correlations between the redshift bins. We choose here to plot their
uncorrelated data points for 0.2 < z < 1.0. Each data point here is
actually a constraint on D

V

(z)/r
s

, and we have multiplied by our
fiducial r

s

to get a distance.
As described further in Mehta et al. (2012), the WMAP curve

on this graph is a prediction, not a fit, assuming a flat ⇤CDM cos-
mology. For each value of ⌦

m

h2 and ⌦

b

h2, one can predict a sound
horizon, and the angular acoustic scale measured by WMAP plus
the assumptions about spatial curvature and dark energy equation
of state then provide a very precise breaking of the degeneracy be-
tween ⌦

m

and H0 and hence a unique D
V

(z)/r
s

. Taking the 1�
range of ⌦

m

h2 and ⌦

b

h2 produces the grey band in Fig. 19. There
is excellent agreement between all four BAO measurements and the
WMAP ⇤CDM prediction.

c
� 2011 RAS, MNRAS 000, 2–33

from Anderson et al. ’12
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Introduction

We have to take fully into account that all observations are made on our past
lightcone, for example, we see density fluctuations which are further away from us,
further in the past;

the measured redshift is not only perturbed by velocities but also by the
gravitational potential;

not only the number of galaxies but also the volume is distorted;

the angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go
out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to
z ≃ 0.2 (main catalog) or even z ≃ 0.6 (BOSS).

But of course much more for future surveys like DES, bigBOSS and Euclid.

Whenever we convert a measured redshift or angle into a length scale, we make
an assumption about the underlying cosmology.

Ruth Durrer (Université de Genève, DPT & CAP) LSS Trieste, July 2012 7 / 25
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What are very large scale galaxy catalogs really measuring?

Following C. Bonvin & RD [arXiv:1105.5080]; F. Montanari & RD [arXiv:1206.3545]
see also Challinor & Lewis, [arXiv:1105:5092].
Relativistic corrections to galaxy surveys are also discussed in:
J. Yoo el al. 2009; J. Yoo 2010

For each galaxy in a catalog we measure

(z, θ, ϕ) = (z,n) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(z,n) and
measure the fluctuation of this count:

∆(z,n) =
N(z,n)− N̄(z)

N̄(z)
.

This quantity is directly measurable ⇒ gauge invariant.
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What are very large scale galaxy catalogs really measuring?

Density fluctuation per redshift bin dz and per solid angle dΩ as δz(n, z).

δz(n, z) =
ρ(n, z)− ρ̄(z)

ρ̄(z)
=

N(n,z)
V (n,z) −

N̄(z)
V (z)

N̄(z)
V (z)

This together with the volume fluctuations, results in the directly observed number
fluctuations

∆(n, z) = δz(n, z) +
δV (n, z)

V (z)

Both these terms are in principle measurable and therefore gauge invariant. We want
to express them in terms of standard gauge invariant perturbation variables.

Ruth Durrer (Université de Genève, DPT & CAP) LSS Trieste, July 2012 9 / 25
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Matter fluctuations per redshift bin

We consider a photon emitted from a galaxy (S), moving in direction n into our
telescope. The observer (O) receives the photon redshifted by a factor

1 + z =
(n · u)S

(n · u)O
.

To first order in perturbation theory one finds (in longitudinal gauge)

δz
(1 + z)

= −
[(

n · V +Ψ
)
(n, z) +

∫ r(z)

0
(Φ̇ + Ψ̇)dλ

]
With this, the density fluctuation in redshift space becomes

δz(n, z) = Dg(n, z) + 3(V · n)(n, z) + 3(Ψ + Φ)(n, z) + 3
∫ rS

0
(Ψ̇ + Φ̇)(n, z(λ))dλ

This quantity is gauge invariant and therefore, in principle, measurable. But when we
count numbers of galaxies per solid bangle and per redshift bin, we also have to
consider volume perturbations.

Ruth Durrer (Université de Genève, DPT & CAP) LSS Trieste, July 2012 10 / 25
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations

.

.

∆(n, z) = Dg +Φ+Ψ+
1
H

[
Φ̇ + ∂r (V · n)

]
+

(
Ḣ
H2 +

2
r(z)H

)(
Ψ+ V · n +

∫ r(z)

0
dr(Φ̇ + Ψ̇)

)

+
1

r(z)

∫ r(z)

0
dr
[
2 − r(z)− r

r
∆Ω

]
(Φ + Ψ).

(C. Bonvin & RD ’11)
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.

.

∆(n, z) =
�� ��Dg +Φ+Ψ+

1
H

[
Φ̇ +

�� ��∂r (V · n)
]

+

(
Ḣ
H2 +

2
r(z)H

)(
Ψ+

�� ��V · n +

∫ r(z)

0
dr(Φ̇ + Ψ̇)

)

+
1
rS

∫ r(z)

0
dr
[
2(Φ + Ψ)−

�� ��r(z)−r
r ∆Ω(Φ + Ψ)

]
.

(C. Bonvin & RD ’11)
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand ∆(n, z) in spherical harmonics,

.

.

∆(n, z) =
∑
ℓm

aℓm(z)Yℓm(n), Cℓ(z, z′) = ⟨aℓm(z)a∗
ℓm(z

′)⟩.

ξ(θ, z, z′) = ⟨∆(n, z)∆(n′, z′)⟩ = 1
4π

∑
ℓ

(2ℓ+ 1)Cℓ(z, z′)Pℓ(cos θ)
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The transversal power spectrum

The transverse power spectrum, z′ = z (from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transversal power spectrum as function of the redshift, ℓ = 20
(from Bonvin & RD ’11)
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The transversal power spectrum
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The transversal correlation function
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The radial power spectrum
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The radial correlation function
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Anisotropic clustering as seen in the BOSS survey

(from Reid et al. ’12)
Anisotropic clustering in CMASS galaxies 5
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Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξ"(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξ"(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

C"1"2i j =
1

599

600∑

k=1

(
ξk"1 (si) −  ξ"1 (si)

) (
ξk"2 (s j) −  ξ"2 (s j)

)
, (7)

where ξk" (si) is the monopole (" = 0) or quadrupole (" = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξ"(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

C"1"2,red
i j = C"1"2i j /

√
C"1"1ii C"2"2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,

c© 0000 RAS, MNRAS 000, 1–1
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Example: Alcock-Paczyński test

(Alcock & Paczyński ’79)
Consider a comoving scale L in the sky.
Horizontally it is projected to the angle θL = L

(1+z)DA(z)
.

Radially its ends are at a slightly different redshifts, ∆zL = LH(z).

∆zL

θL
= (1 + z)DA(z)H(z) = F (z) ≡

∫ z
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Example: Alcock-Paczyński test

F (z)AP ≡ ∆zL/θL measured from the theoretical power spectrum (with Euclid-like
redshift accuracies) F (z) ≡

∫ z
0

H(z)
H(z′)dz′.
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. . . . . .

Conclusions

So far cosmological LSS data mainly determined ξ(r), or equivalently P(k). These
1d functions are easier to measure (less noisy) but they require an input
cosmology converting redshift and angles to length scales,

r =
√

d(z)2 + d(z′)2 − 2d(z)d(z′) cos θ .

But future large & precise 3d galaxy catalogs like Euclid will be able to determine
directly the measured 3d correlation function ξ(θ, z, z′) and Cℓ(z, z′) from the data.

These 3d quantities will of course be more noisy, but they also contain more
information.

These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via (redshift space distortions) and to the perturbations of spacetime
geometry (lensing) .

The spectra depend sensitively and in several different ways on dark energy
(growth factor, distance redshift relation), on the matter and baryon densities, bias,
etc. Their measurements provide a new route to estimate cosmological
parameters.

An example is the Alcock-Paczyński test.
————————
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