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Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
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SDSS-IIl (BOSS)
power spectrum.

Galaxy surveys ~

matter density fluctuations,
biasing and redshift space
distortions.

Trieste, July 2012 5/25



Introduction

The observed Universe is well approximated by a ACDM model,
Qpn ~0.72, Qm = Qegm + Qp ~ 0.28, Qp ~ 0.04.
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Introduction

@ We have to take fully into account that all observations are made on our past
lightcone, for example, we see density fluctuations which are further away from us,
further in the past;
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Introduction

@ We have to take fully into account that all observations are made on our past
lightcone, for example, we see density fluctuations which are further away from us,
further in the past;

@ the measured redshift is not only perturbed by velocities but also by the
gravitational potential;

@ not only the number of galaxies but also the volume is distorted;

@ the angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
outto z ~ 1 or more, they become relevant. Already for SDSS which goes out to
z ~ 0.2 (main catalog) or even z ~ 0.6 (BOSS).

@ But of course much more for future surveys like DES, bigBOSS and Euclid.

@ Whenever we convert a measured redshift or angle into a length scale, we make
an assumption about the underlying cosmology.
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What are very large scale galaxy catalogs really measuring?

Following C. Bonvin & RD [arXiv:1105.5080]; F. Montanari & RD [arXiv:1206.3545]
see also Challinor & Lewis, [arXiv:1105:5092].

Relativistic corrections to galaxy surveys are also discussed in:

J. Yoo el al. 2009; J. Yoo 2010
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This quantity is directly measurable = gauge invariant.
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What are very large scale galaxy catalogs really measuring?

Density fluctuation per redshift bin dz and per solid angle d2 as 4.(n, z).
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What are very large scale galaxy catalogs really measuring?

Density fluctuation per redshift bin dz and per solid angle d2 as 4.(n, z).

_ Nn.z) _ N2)
5 _pn,2) —p(2) _ Vinz ~ Vo)
Z(nvz) - = - N(z)
(2) v
@

This together with the volume fluctuations, results in the directly observed number
fluctuations
dV(n,z)

A(n,z) =6z(n,z) + V()

Both these terms are in principle measurable and therefore gauge invariant. We want
to express them in terms of standard gauge invariant perturbation variables.

Ruth Durrer (Université de Genéve, DPT & CAP) Trieste, July 2012 9/25



Matter fluctuations per redshift bin

We consider a photon emitted from a galaxy (S), moving in direction n into our
telescope. The observer (O) receives the photon redshifted by a factor

(n-u)s

1+z= .
(n-u)o
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Matter fluctuations per redshift bin

We consider a photon emitted from a galaxy (S), moving in direction n into our
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Matter fluctuations per redshift bin

We consider a photon emitted from a galaxy (S), moving in direction n into our
telescope. The observer (O) receives the photon redshifted by a factor

_(n-u)s
(n-u)o

To first order in perturbation theory one finds (in longitudinal gauge)

1+2z

nz) . .
Uiiza:—[(n-V—Hll)(mz)ﬁ—/o (¢+\U)d)\]

With this, the density fluctuation in redshift space becomes

5:(n. 2) = Dy(n, 2) + 3(V - n)(n, 2) + 3(W + B)(n, 2) + 3 /rs(\il + d)(n, 2(A)dA
0

This quantity is gauge invariant and therefore, in principle, measurable. But when we
count numbers of galaxies per solid bangle and per redshift bin, we also have to
consider volume perturbations.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations

A(n,z) = Dg+<b+\v+%[ci>+8r(V-n)]
7_'[ 2 r(z
+< +r(z)7—[> <W+V-n+ A dr(d>+\ll)>
1 r(2)

o oo {2 . ’(z)r_ ’Ag] (®+ W),

(C. Bonvin & RD '11)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations

A(n,z) = .+¢+\IJ+% [¢+M]

G ) (o521 [ )

T r(é)r[(¢+w) Ut A(¢+W)}.

fs

(C. Bonvin & RD '11)
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand A(n, z) in spherical harmonics,

A(n,2) = Zaem(z Yen(n),  Cu(z,2') = (am(2)@im(2'))-

£0,2,2') = (A(n, 2)A(n', 2')) = 41—71_ Z(2£—|— 1)Ce(z, z")P,(cos 0)
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The transversal power spectrum

The transverse power spectrum, z’ = z (from Bonvin & RD '11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transversal power spectrum as function of the redshift, £ = 20
(from Bonvin & RD ’11)
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The transversal power spectrum
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The transversal correlation function
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The radial power spectrum
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The radial correlation function
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Anisotropic clustering as seen in the BOSS survey

(from Reid et al. ’12)
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Example: Alcock-Paczynski test

(Alcock & Paczynski '79)

Consider a comoving scale L in the sky.

Horizontally it is projected to the angle 6, = m

Radially its ends are at a slightly different redshifts, Az, = LH(z).
Az

- = (14 2)Da(2)H(z2) =
L

H(z'

020

Osnro [radlans]

015
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Example: Alcock-Paczynski test

F(2)*" = Az /0, measured from the theoretical power spectrum (with Euclid-like

redshift accuracies) Oz [,'(zz) az'.
ooaF™ . . . -
T 002 r
N : i | f solid errors:
Y ooofi=nd. ot "\' angular resolution 0.02°
%5 - I ! dashed errors:
L -0.02 i Py angular resolution 0.05°
-0.04 N ]
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(from Montanari & RD ’12)
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Conclusions

@ So far cosmological LSS data mainly determined £(r), or equivalently P(k). These
1d functions are easier to measure (less noisy) but they require an input
cosmology converting redshift and angles to length scales,

r=1+/d(z)? +d(z')2 —2d(z)d(z’) cos 6 .
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