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Outline 

  
•  Intro: understanding the origin (or reality?) of cosmic acceleration 
through galaxy clustering 

•  Redshift-space distortions (RSD) an old tool in a new context 
 
•  Improving the data: the VIPERS project at ESO  

•  Improving the tools: modelling RSD in the precision cosmology era, 
systematic errors and forecasts 
 



Cosmic concordance: a w=-1 Universe? 

Amanullah et al. 2010 (Union supernovae) 
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“…the Force be with you” 

? 

However, lambda (or dark energy) is not the end of the story… 



Z=6 

Z=2 

Z=0 

To distinguish, look at how linear density fluctuations grow in the 
expanding Universe 

(Image credit: 
V. Springel) 
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Growth produces motions: galaxy peculiar velocities 

Figure by K. Dolag 



 real space 

Eke & 2dFGRS 2003 

In galaxy redshift surveys 
peculiar velocities manifest 
themselves as redshift-space 
distortions (Kaiser 1987) 



 redshift space 

Line of sight to 
observer 

In galaxy redshift surveys 
peculiar velocities manifest 
themselves as redshift-space 
distortions (Kaiser 1987) 



2001 

Nature 410, 169 (2001)  

The renaissance of RSD… a change of perspective 

 
 

Nature 451, 541 (2008)  
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! also Zhang et al., 
Phys. Rev. Lett. 99,  
141302 (2007), 
proposing combination 
of RSD and lensing 



RSD at z~1: slightly more than a proof of concept, but… 

Nature 451, 541 (2008)  

Very first Euclid-spec 
(SPACE) forecast 



Waiting for Euclid: improving the z~1 data… 



Meneux & ZCOSMOS Collaboration, 2009 De la Torre, LG & ZCOSMOS Collaboration, 2010, 
MNRAS, 409, 867 

Status in 2008: at z~1 still small volumes and low statistics 

! Enviromental dependence of clustering in 
hierarchical models (Abbas & Sheth 2005) 





VIPERS: exploiting VIMOS Multi-Object Spectroscopy at the VLT (440 hours) 

(see http://vipers.inaf.it) 



Survey design goals 

•  Maximize volume (minimize cosmic variance) 
 
•  Focus on z=0.5-1.2 range 
 
•  Keep good sampling (n~10-2 gal h3 Mpc-3 , comparable to 

2dFGRS and SDSS) 
 
•  Optimize cosmology, but keep high legacy return (ESO time) 



VIPERS in a nut-shell 

•  ~24 deg2 over W1 and W4 CFHTLS wide fields (~16 + 8) 

•  IAB<22.5, LR Red grism, 45 min exp. 

•  288 VIMOS pointings 

•  PSF + SED –based star-galaxy separation (AGN color 
recovery) 

•  z>0.5 color-color pre-selection  

•  ~100,000 redshifts, >40% sampling 

•  440.5 VLT hours 

•  Density and volume comparable to 2dFGRS, but at z~0.8 

•  Builds upon the VVDS/ZCOSMOS experience 



Location of VIPERS fields 

CFHT Legacy Survey Areas 

4x2 deg2 8x2 deg2 



VIPERS Team 
•  MILANO OAB (Project Office): L. Guzzo, B. Granett, A. Iovino, A. Marchetti, S. 

Rota, U. Abbas (Turin) 
•  MILANO IASF (Data Reduction Centre): B. Garilli, M. Scodeggio, D. Bottini, A. 

Fritz, P. Franzetti, D. Maccagni, L. Paioro, M. Polletta 
•  BOLOGNA: M. Bolzonella, L. Moscardini, A. Cappi, Y. Davidzon, C. Di Porto, F. 

Marulli, D. Vergani, G. Zamorani, A. Zanichelli, E. Branchini (Rome) 
•  EDINBURGH: J. Peacock, S. de la Torre  
•  GARCHING MPE: S. Phleps, H. Schlagenhaufer  
•  MARSEILLE: O. Le Fevre, C. Adami, J. Bel, V. Le Brun, L. Guennou, L. Tasca, C. 

Marinoni 
•  PARIS (TERAPIX CFHTLS): H. McCracken, Y. Mellier, M. Volk, J. Coupon (Tokyo), 

J. Blaizot (Lyon) 
•  TRIESTE: G. De Lucia, O. Cucciati 
•  PORTSMOUTH: W. Percival, R. Tojeiro, R. Nichol, A. Burden 
•  WARSAW/NAGOYA: A. Pollo, K. Malek, O. Solarz, J. Krywult (Kielce) 



VIPERS broader scientific goals 
•  Growth rate from redshift-space distortions 
•  Galaxy clustering at z~1 with comparable precision to z~0: 

–  Evolution of !(r) and P(k) ("m, "b at z~1) 
–  Dependence on galaxy properties 
–  Galaxy-DM relations (HOD modeling)  

•  Galaxy biasing 
•  Massive clusters and super-clusters of galaxies (large volume) 
•  Evolution of galaxy colors and environmental effects (good 

sampling) 
•  Bright/massive/rare galaxies and the galaxy luminosity and stellar 

mass functions (large volume) 
•  Evolution of AGN’s 
•  Weak-lensing (photo-z calibration, combination with CFHTLenS) 
•  Multi-wavelength studies (SWIRE, XMM-XXL, UDS) 



Sky coverage (as of June 2012) 

W1 W4 



Current Overall Status 

•  June 12, 2012: internal V3.0 release 

• 193 VIMOS pointings, out of 288 
•  W4 fully covered 
•  A few pointings of very bad quality to be re-observed 
•  First public release (~20,000 z) before end of 2012 
•  Expected completion: 2014 



Sampling rate and efficiency 



V3.0 redshift distribution 

55,359 redshifts 

(63,6% of total  
survey) 



W4 

W1 
(~20,000 z, summer 2011) 



•  VIPERS mag/color criteria work very well in selecting 
0.5<z<1.2 

•  Characterize VIPERS parent sub-catalogue 
•  Accurate N(z) crucial for de-projection: provided by 

VIPERS 

•  Exploits currently largest available volume of CFHTLS-
Wide areas 

A measurement of the real-space galaxy P(k) at <z>~0.8 from the full 
CFHTLS-Wide data plus VIPERS N(z) 

B. Granett & VIPERS Team, MNRAS, in press, arXiv 1112.0008 
CFHTLS-Wide: 
 
•  ~140 deg2  

•  5-bands (ugriz)  
 
•  2.1 million galaxies 
 



Real space P(k) at z~0.7 from CFHTLS-Wide + VIPERS N(z) 

2) Deconvolved following 
Efstathiou & Moody 2001 

 

 

 

Complementary to recent Cl 
estimate at z~0.5 from SDSS 
LRGs (Thomas, Abdalla & 
Lahav 2011) 

1) Cl spectrum using Tegmark 
1997 quadratic estimator 

B. Granett, LG & VIPERS Team, 2012, 
MNRAS, 421, 251 
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Xia, Granett, Viel et al., MNRAS, in press – arXiv 
1203.5105: improved constraints on neutrino masses 



•  "mh from shape 

•  RSD in Fourier space 

•  neutrino mass 

•  large-scale bias vs galaxy properties 

•  BAO detection 

•  Improve using reconstruction (Burden, 
Percival, et al. in prep.) 

Expected full 3D P(k) at <z>~0.8 from VIPERS only 

 (simulation by W. Percival) 



S. de la Torre et al.,  in prep.   

Projected correlation function (not yet from V3.0 !) 

Sample v2 (~25,000 z) Sample v1.1 (~12,000 z) 



S. de la Torre et al.,  in prep.   

Sample v1.1 (~12,000 z) Sample v2 (~25,000 z) 

Redshift-space correlation function 



•  BASICC simulation halo 
catalogues (Angulo, Baugh et 
al): 3 billion particles in a 
1340 h-1 Mpc side box 

•  RESULT: ~5-10% 
systematic underestimate #

•  Hints that larger-mass halos 
do perform better (e.g. LRGs)#

•  See also Okumura & Jing 
2011 using ratios of moments 
and Kwan et al. 2011 

•  Calls for improved 
description of RSD 

•  Much work ongoing (e.g. 
Kwan et al. 2011, Reid & 
White 2012, …) 

Systematic errors in estimating $ with classical linear 
model + exponential damping 

Bianchi, LG, et al. 2012, arXiv:1203.1545 
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where ξδδ , ξδθ , ξθθ are the Fourier conjugate pairs of Pδδ , Pδθ , Pθθ
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as δg = bLδ. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter β = f/bL, which accounts
for the large-scale linear bias bL of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s
g (k, µ) = D(kµσv)PK(k, µ, b) (24)

where,

D(kµσv) =






exp(−(kµσv)
2)

1/(1 + (kµσv)
2)
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

A : b2(k)Pδδ(k) + 2µ2fb(k)Pδδ(k)
+µ4f2Pδδ(k)

B : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k)

C : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k) + CA(k, µ; f, b)
+CB(k, µ; f, b)

b(k) =






bL

bLbNL(k)

Hereafter, we will refer as the different PK models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as δ ∝ θ. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = bL and a general non-linear bias which we define as
b(k) = (Pgg/Pδδ)

1/2 (k) = bLbNL(k), where Pgg is the galaxy
power spectrum and bNL(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate Pδδ , Pδθ ,
and Pθθ real-space power spectra as input. Here we use the Pδδ

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain Pθθ and Pδθ

from Pδδ . The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ΛCDM and quintessence dark energy
cosmological models. Alternatively Pθθ , Pδθ , Pδδ can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the Pδδ , Pδθ , Pθθ calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0
and z = 1. We find that all power spectra agree very well below
k � 0.2 and k � 0.3 respectively for the two redshifts considered,
except in the case of Pδθ for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the Pδθ fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower

c� 2011 RAS, MNRAS 000, 1–14
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as δg = bLδ. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter β = f/bL, which accounts
for the large-scale linear bias bL of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s
g (k, µ) = D(kµσv)PK(k, µ, b) (24)

where,
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A : b2(k)Pδδ(k) + 2µ2fb(k)Pδδ(k)
+µ4f2Pδδ(k)

B : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k)

C : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k) + CA(k, µ; f, b)
+CB(k, µ; f, b)
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Hereafter, we will refer as the different PK models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as δ ∝ θ. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = bL and a general non-linear bias which we define as
b(k) = (Pgg/Pδδ)

1/2 (k) = bLbNL(k), where Pgg is the galaxy
power spectrum and bNL(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate Pδδ , Pδθ ,
and Pθθ real-space power spectra as input. Here we use the Pδδ

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain Pθθ and Pδθ

from Pδδ . The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ΛCDM and quintessence dark energy
cosmological models. Alternatively Pθθ , Pδθ , Pδδ can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the Pδδ , Pδθ , Pθθ calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0
and z = 1. We find that all power spectra agree very well below
k � 0.2 and k � 0.3 respectively for the two redshifts considered,
except in the case of Pδθ for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the Pδθ fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower

c� 2011 RAS, MNRAS 000, 1–14

(details in de la Torre & Guzzo 2012) 
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as δg = bLδ. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter β = f/bL, which accounts
for the large-scale linear bias bL of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s
g (k, µ) = D(kµσv)PK(k, µ, b) (24)

where,
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A : b2(k)Pδδ(k) + 2µ2fb(k)Pδδ(k)
+µ4f2Pδδ(k)

B : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k)

C : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k) + CA(k, µ; f, b)
+CB(k, µ; f, b)
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Hereafter, we will refer as the different PK models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as δ ∝ θ. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = bL and a general non-linear bias which we define as
b(k) = (Pgg/Pδδ)

1/2 (k) = bLbNL(k), where Pgg is the galaxy
power spectrum and bNL(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate Pδδ , Pδθ ,
and Pθθ real-space power spectra as input. Here we use the Pδδ

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain Pθθ and Pδθ

from Pδδ . The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ΛCDM and quintessence dark energy
cosmological models. Alternatively Pθθ , Pδθ , Pδδ can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the Pδδ , Pδθ , Pθθ calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0
and z = 1. We find that all power spectra agree very well below
k � 0.2 and k � 0.3 respectively for the two redshifts considered,
except in the case of Pδθ for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the Pδθ fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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between  density and velocity 
divergence fields + NL bias 
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"  Mock >nL* catalogues at z=0 
and z=1 built from MultiDark Run 
1 halo catalogues (Prada et al. 
2011) + HOD ; plus LasDamas 
“faint LRG” (McBride et al. in 
prep.) 

"  P%% from CosmicEmu (Lawrence 
et al. 2010), P%& and P&& from 
Jennings et al. (2011) fitting function 
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as δg = bLδ. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter β = f/bL, which accounts
for the large-scale linear bias bL of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s
g (k, µ) = D(kµσv)PK(k, µ, b) (24)

where,
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Hereafter, we will refer as the different PK models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as δ ∝ θ. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = bL and a general non-linear bias which we define as
b(k) = (Pgg/Pδδ)

1/2 (k) = bLbNL(k), where Pgg is the galaxy
power spectrum and bNL(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate Pδδ , Pδθ ,
and Pθθ real-space power spectra as input. Here we use the Pδδ

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain Pθθ and Pδθ

from Pδδ . The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ΛCDM and quintessence dark energy
cosmological models. Alternatively Pθθ , Pδθ , Pδδ can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the Pδδ , Pδθ , Pθθ calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0
and z = 1. We find that all power spectra agree very well below
k � 0.2 and k � 0.3 respectively for the two redshifts considered,
except in the case of Pδθ for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the Pδθ fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as δg = bLδ. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter β = f/bL, which accounts
for the large-scale linear bias bL of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s
g (k, µ) = D(kµσv)PK(k, µ, b) (24)

where,
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+µ4f2Pθθ(k) + CA(k, µ; f, b)
+CB(k, µ; f, b)
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




bL

bLbNL(k)

Hereafter, we will refer as the different PK models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as δ ∝ θ. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = bL and a general non-linear bias which we define as
b(k) = (Pgg/Pδδ)

1/2 (k) = bLbNL(k), where Pgg is the galaxy
power spectrum and bNL(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate Pδδ , Pδθ ,
and Pθθ real-space power spectra as input. Here we use the Pδδ

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain Pθθ and Pδθ

from Pδδ . The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ΛCDM and quintessence dark energy
cosmological models. Alternatively Pθθ , Pδθ , Pδδ can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the Pδδ , Pδθ , Pθθ calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0
and z = 1. We find that all power spectra agree very well below
k � 0.2 and k � 0.3 respectively for the two redshifts considered,
except in the case of Pδθ for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the Pδθ fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as δg = bLδ. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter β = f/bL, which accounts
for the large-scale linear bias bL of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,
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where,

D(kµσv) =






exp(−(kµσv)
2)

1/(1 + (kµσv)
2)

PK(k, µ, b) =






A : b2(k)Pδδ(k) + 2µ2fb(k)Pδδ(k)
+µ4f2Pδδ(k)

B : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k)

C : b2(k)Pδδ(k) + 2µ2fb(k)Pδθ(k)
+µ4f2Pθθ(k) + CA(k, µ; f, b)
+CB(k, µ; f, b)

b(k) =






bL

bLbNL(k)

Hereafter, we will refer as the different PK models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as δ ∝ θ. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = bL and a general non-linear bias which we define as
b(k) = (Pgg/Pδδ)

1/2 (k) = bLbNL(k), where Pgg is the galaxy
power spectrum and bNL(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate Pδδ , Pδθ ,
and Pθθ real-space power spectra as input. Here we use the Pδδ

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain Pθθ and Pδθ

from Pδδ . The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ΛCDM and quintessence dark energy
cosmological models. Alternatively Pθθ , Pδθ , Pδδ can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the Pδδ , Pδθ , Pθθ calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0
and z = 1. We find that all power spectra agree very well below
k � 0.2 and k � 0.3 respectively for the two redshifts considered,
except in the case of Pδθ for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the Pδθ fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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Modelling VIPERS clustering:  
redshift-space distortions 

Modelling non-linearities: couplings 
between  density and velocity 
divergence fields + NL bias. NL bias 
has little effect on systematic errors 

(Kaiser) 

(Scoccimarro) 

(Taruya) 

See De la Torre & Guzzo, 2012, in press, arXiv:1202.5559 



Modelling VIPERS clustering:  
redshift-space distortions 

"  VIPERS (as most surveys now and in 
the future) have stronger signal on 
nonlinear and quasi-nonlinear scales 

# Need appropriate non-linear modelling 
 
"  Preliminary modelling using Taruya et 

al. NL model (fit. scales: 5 Mpc/h 
<rp<50 Mpc/h) 

"  Estimating proper covariance matrix is 
challenging (e.g. BOSS DR9)  

# Need high number of large mocks (see 
Manera talk) 

"  Different strategies being explored: Fit 
full !(rp,") or just its multipole 
moments? (e.g. Reid & White 2011) 
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You won't get a VIPERS f!8 
value today ! (sorry) 

(De la Torre & VIPERS Team, in preparation) 
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VVDS F22 (~6000 gals) VIPERS (~100,000 gals) 

Expectations from fully completed survey… 



…compared to current state of the art at z>0.5 

- WiggleZ: ~152,000 gals 
over 5000 deg2 (Blake et al. 
2011, arXiv:1104.2948) 

- SDSS-III BOSS DR9: 
~265,000 galaxies over 3275 
deg2 (see series of BOSS 
papers on astro-ph) 

- However, VIPERS will 
measure $ with multiple 
populations and reduce 
cosmic variance (McDonald & 
Seljak, 2009, JCAP; but see 
Gil-Marin et al. 2010, arXiv:
1003.3238), while testing 
systematic effects  

- Thanks to high density, 
VIPERS also traces low-
density regions better than 
BAO-focused surveys 

 

VIPERS 
Single 
population 

BOSS-DR9 
(Reid et al. 2012) 



•  Classify quantitatively 
sub-populations of 
galaxies (e.g. LRG-like) 

•  Build well-defined sub-
sample for cosmological 
analyses  

•  “Repair” damaged 
spectra 

•  Consistently compare 
clustering/evolution with 
z~0 samples  

How to define sub-populations: PCA spectral classification 

Marchetti, Granett, LG + VIPERS Team, MNRAS, submitted (arXiv:1207.4374) 



1.  From redshift distortions  

2.  From peculiar velocities at 
low redshift  (Hudson & 
Turnbull 2012, astro-ph)  

3.  From a direct estimate of 
the growth of structure 
using passive galaxies as 
tracers (Tojeiro et al. 2012) 

The current status including new ways to measure f(z) 

 (from Tojeiro & BOSS Collaboration 2012) 



           0.55   0.65   0.75   0.85   0.95   1.05   1.15    1.25   1.35           (U-B) rest frame  

Color-density relation 



Summary of VIPERS current facts 
•  VIPERS exploits VIMOS capabilities for LSS study, filling a specific niche at z~1: 

volume 6 x 107 h-3 Mpc3, sampling ~ 40%  

•  Aimed at measuring clustering and growth at 0.5<z<1, to an accuracy 
comparable to local state-of-the-art surveys 

•  Volume smaller than BAO surveys (BOSS, Wigglez), but high sampling allows 
defining sub-populations and optimize tracers for RSD and other LSS analyses 

•  In parallel, powerful probe for galaxy evolution studies over 8 billion years, (e.g. 
coupled to SDSS) 

•  Efficient survey pipeline: automatic data calibration, redshift measurement and 
database archiving: as of today ~55,500 secure spectra already available 

•  With current observing rate, completion expected by 2014 

•  Large set of ancillary data (GALEX, WIRCAM, VISTA, XMM) 

•  Raw data immediately public, redshifts released in regular tranches (first release 
planned for end 2012) 



Predicting statistical errors: can we trust Fisher Matrix forecasts?#

Bianchi et al. 2012, arXiv:1203:1545 



Predicting statistical errors: a handy and accurate scaling formula 
describing the behaviour found in the Monte Carlo experiments #

Bianchi, et al. 2012 



•  “ILLUMINATING DARK ENERGY WITH 
THE NEXT GENERATION OF 
COSMOLOGICAL REDSHIFT SURVEYS” 

•  ERC Advanced Research grant, 5 
years, 1.72 Meuro 

•  5 postdoc + 3 PhD positions 

•  Starting 1 May 2012 
 

•  Improve modelling and estimators of 
clustering and redshift distortions, 
preparring for precision cosmology 

•  Apply them to ongoing new surveys 
(e.g. VIPERS) 

•  Combine with other probes of LSS 
(clusters of galaxies) and CMB 
measurements (Planck) 

! PREPARE FOR EUCLID… 



Summary 

•  Explaining the origin of cosmic acceleration is plausibly the most compelling problem in 
cosmology: did Einstein have the last word on gravity?  

•  A brilliant future for galaxy redshift surveys: measure both w(z) and f(z) using BAOs/P(k) 
and z-distortions (plus clusters…) ! test dark energy vs modified gravity 

•  A renaissance for redshift-space distortions: not considered in this context before 2008, now 
a key “dark energy probe” (EUCLID) 

1) RSD: Improving the data 
•  Exciting z-distortions results from WiggleZ and BOSS, designed for BAO 

•  VIPERS: a 2dFGRS at z~0.8, ~100,000 highly-sampled redshifts; early measurement of real-
space P(k) in combination with CFHTLS 

•  EUCLID is approved and will couple a massive (slitless) redshift survey with a high-resolution 
imaging survey, to combine galaxy clustering and weak lensing (launch 2019) 

2) RSD: Improving the estimators 
•  Need to go beyond Kaiser-Hamilton formalism, if we aim at precision cosmology on f(z) 

•  Do simultaneous estimate of BAO and z-distortions (including Alcock-Paczynski, see Simpson 
& Peacock 2010) 

•  A lot of work ongoing in the community, exciting times ahead 

•  DARKLIGHT: an ERC-supported program to bring estimators to the level of the new data 


