

2419-22

Workshop on Large Scale Structure

30 July - 2 August, 2012

X-ray Galaxy Clusters as Cosmological and Astrophysical Probes

H. Boehringer Max Planck Institute for Extraterrestrial Physics

X-ray Galaxy Clusters as Astrophysical Laboratories and Cosmological Probes

Hans Böhringer

Max-Planck-Institut für extraterrestrische Physik, Garching

Gayoung Chon (MPE), Luigi Guzzo (Merate), Chris Collins (Liverpool), Gabriel Pratt (Saclay) Monique Arnaud (Saclay)

1

Overview

- Galaxy Clusters and Large-scale Structure (LSS)
- Assessing the LSS with X-ray Galaxy Cluster Surveys
- Testing Cosmological Models
- eROSITA

Different LSS for Different Cosmological Models

The Role of Galaxy Clusters in the Hierarchy of Large-Scale Structure

From the cluster population:

- Fluctuation amplitude and shape of P(k)_{DM} (over few Mpc range) by cluster abundance
- 2) Large-scale cluster density distribution P(k)_{CL} and its bias above P(k)_{DM}
- 3) The **evolution** of the cluster population testing the growth of structure
 - Evolution of internal cluster properties

The Role of X-ray Galaxy Clusters in Cosmological Studies

Galaxy Clusters, the largest well defined objects in the Universe. The form a well understood integral part of the cosmic large-scale structure.

Therefore they are ideal probes to study cosmic evolution and to test cosmological models.

82 - 87% = Dark Matter 11 - 13% = hot gas 2 - 5% = galaxies(for H₀ = 70)

The intracluster gas is heated when the cluster forms and does not cool – it still reflects the potential depth.

Assessing the LSS with X-ray Galaxy Cluster Surveys

and Testing Cosmological Models

Combined REFLEX & NORAS Survey

Extragal. ALL-SKY RASS Survey

ESO – Key Program conducted at La Silla 1992 - 99 (II) - 2011

9

REFLEX II Selection Function

Mass Function from Cosmological Simulations

Universal mass function from Tinker et al. (2008) for D = 200, 800, 3200

Empirical X-ray Luminosity Mass Relation

From cosmological model predicted and observed X-ray luminosity function

Probing the large-scale matter distribution with galaxy clusters

Spatial modulation of the density of peaks (clustering) :

→ The cluster distribution traces the matter distribution in a "biased" (amplified) way

Biasing:
$$\widetilde{P}(k) = b^2 \cdot P_{DM}(k)$$

 $b(M, z) = 1 + \frac{\Delta_*}{\sigma^2(M, z)} - \frac{1}{\Delta_*}$ [Mo & White 1996,
Sheth & Tormen 1999]
 \Rightarrow biased (amplified) probe of very large scales
Hans Böhringer [CTP, Triester 31, 7, 2012]

REFLEX II Power Spectrum (ACDM-Cosmology)

The lines give the prediction of the Concordance Cosmological Model with WMAP 5yr parameters

Balaguera-Antolinez et al. 2010

Hans Böhringer ICTP, Trieste 31. 7. 2012

REFLEX II Power Spectrum (biasing)

The amplitude of the P(k) increases with increasing lower mass limit

Constraints on Cosmological Models and Ω_m from the *REFLEX* Cluster Survey

Evolution of the Cluster Mass Function

Evolution of the Cluster Mass Function

Differential comoving cluster abundance (> Mass_{limit}) ster⁻¹ dz=0.1⁻¹

Hans Böhringer ICTP, Trieste 31. 7. 2012

Prospects of the eROSITA Mission

on Spektrum-Roentgen-**Gamma Satellite**

eROSITA

Detection of 50 000 – 100 000 galaxy clusters in X-rays

- Redshift evolution with several hundred clusters to z ~ 1.5
- Precise large-scale structure measure > 1 Gpc scale including baryonic oscillations Hans Böhringer ICTP, Trieste 31.7.2012

The eROSITA Instrument

Figure 2: Schematic view (CAD-model) of the eROSITA telescope. In front of the seven mirror modules are X-ray and thermal baffles (left figure). A carbon fiber structure combines these with cameras at the bottom (right figure). The telescope structure rests on the spacecraft truss via a hexapod. Two startrackers are used for correct boresighting. Cooling of the cameras require a complicated system of constant and variable conductance heatpipes and radiators. Also the heat of the electronics boxes is conducted by loop heatpipes to the thermal baffle on top of the telescope.

eROSITA Teleskop System

number of mirror systems	7
number of nested mirror shells	54
angular resolution	<15" (1 KeV)
energy range	0.5 – 10 keV
diameter of 1 mirror system	358mm
focal length	1600 mm
material of mirror shells	nickel
mirror coating	gold
weight of 1 mirror system	< 50kg
detector principle	pn-CCD
size	19.2×19.2 mm ²
pixelsize	75µm × 75µm
read out speed	50msec
energy resolution	
weight of each detector	~14 kg

eROSITA Mirror Module

Photos credit: Vadim Burwitz

Hans Böhringer ICTP, Trieste

ste 31. 7. 2012

eROSITA Mirror Module

eROSITA Detector System

X-ray CCD with 384 x 384 pixels (FoV 1.03 deg) Pixelsize 75 μm x 75 μm (9.4" x 9.4") Integration time 50 msec (shift time to storage 100 µsec)

> Hans Böhringer ICTP, Trieste 31. 7. 2012

ADC

ADC

The eROSITA Survey

- SRG/eROSITA will fly to L2 (launch with Russian Zenit rocket)
- eROSITA will scan the sky in great ecliptic circles
- In the 4 yr sky survey: 8 full scans of the sky
- After the survey period, a pointed observation phase is foreseen
- The mission goal requirement is 7yr

Effective Area and Grasp of eROSITA

Effective area

and grasp of eROSITA

compared to XMM-Newton

Galaxy Cluster Number Counts in the eROSITA Survey

M. Mühlegger Ph.D. Thesis

N _{phot.}	all sky	extra	gal. Sky	
50	~300 00	00 ~2	40 000	
100	~140 00	00 ~1	05 000	
500	~ 20 00	00 ~	15 000	
1000	~ 900	00 ~	6 700	

Redshift extragal. Sky > 100 cts

> 0.3	~ 50 000
> 0.6	~ 10 000
> 0.8	~ 3 500
> 1.0	~ 900

M. Mühlegger, G. Chon, H. Böhringer

Mass and Redshift Distribution of the Clusters

15 000 deg² 4MOST region

Results of cluster number forecast for different cosmological models

32

Constraints from 100K Cluster Survey

Time dependence of w_x

$$p(z) = w_x(z) * \rho(z)$$

Haiman, et al., 2005, astro-ph/0507013

Hans Böhringer ICTP, Trieste 31. 7. 2012

Constraining Cosmological Models

Pillepich et al. 2012

34

Conclusions

 Galaxy clusters are important and useful probes to study the LSS and to test cosmological models.
 These tests are complementary to other cosmological tests (consistency, breaking degeneracies).

 Progress in understanding scaling relations allows us now to calibrate observable-mass relations for galaxy clusters to about or better than 10% (for X-ray and SZE surveys)

• We have observationally confirmed (for the first time) that the statistical bias of the clustering of DM-halos (galaxy clusters) works as predicted.

•eROSITA is coming - official launch in Spring 2014 !