

2419-5

Workshop on Large Scale Structure

30 July - 2 August, 2012

Falsifying LambdaCDM with clusters

D. Huterer *University of Michigan*

Falsifying LCDM with Galaxy Clusters

(and with future data in general)

Dragan Huterer (University of Michigan)

Collaborators:

Michael Mortonson (Ohio State), Wayne Hu (Chicago) Eduardo Ruiz, Dan Shafer (Michigan)

Current evidence for dark energy is impressively strong

Since the discovery of acceleration, constraints have converged to $w \approx -1$

$$SN + BAO + CMB$$

Ruiz. Shafer et al. 1206.4781

Underlying Philosophy

- The data are now consistent with LCDM, but that may change.
- So, what observational strategies do we use to determine which violation of Occam's Razor has the nature served us?
- Possible alternatives: w(z) ≠ -1, early DE, curvature ≠ 0, modified gravity, more than one of the above (?!)
- Goal: to calculate predicted ranges in fundamental cosmological functions D(z), H(z), G(z), (and any other parameters/functions of interest), given current or future observations
- ... and therefore to provide 'target' quantities/redshifts for ruling out classes of DE models with upcoming data (BigBOSS, DES, LSST, Euclid,)

DE Models and their complexity

Modeling of DE

Modeling of low-z w(z):

Principal Components

$$w(z_j) = -1 + \sum_{i=1}^{N} \alpha_i e_i(z_j)$$

500 bins (so 500 PCs) 0.03<z<1.7

We use first ~10 PCs; (results converge 10→15)

Fit of a quintessence model with PCs

Methodology

1. Start with the parameter set:

$$\Omega_{\mathrm{M}}, \Omega_{\mathrm{K}}, H_0, w(z), w_{\infty}$$

- -2. Use either the current data or future data (current = Union2 + WMAP + $BAO_{z=0.35}$ + H_0)
- 3. Employ the likelihood machine

Markov Chain Monte Carlo likelihood calculation, between ~2 and ~15 parameters constrained

4. Compute predictions for D(z), G(z), H(z) (and $\gamma(z)$, f(z))

current LCDM predata

Current Quintessence predictions (flat, no Early DE)

Smooth DE with curvature and/or Early DE

Some quantities
are accurately predicted
even in very general classes
of DE models

(e.g. specific linear combination of G₀ and G evaluated at z=1 vs z=z_{max})

From **current** data, projected down on $\Omega_{\rm M}$ - σ_8

In principal, constraints are good...

Generalizing FoM to many parameters - PCs of w(z)

$$\operatorname{FoM}_{n}^{(\operatorname{PC})} \equiv \left(\frac{\det \mathbf{C}_{n}}{\det \mathbf{C}_{n}^{(\operatorname{prior})}}\right)^{-1/2}$$

(proportional to volume of n-dim ellipsoid)

Full SN systematics degrade this FoM by factor 2-3 (Ruiz et al, arXiv:1206.4781)

Falsifying LCDM and Quintessence with "pink elephant" clusters

Pink Elephant:

- any of various visual hallucinations sometimes experienced as a withdrawal symptom after sustained alcoholic drinking.

-Dictionary.com

Fink elephant, candidate 1. SPT-CL J0546-5345

Brodwin et al, arXiv:1006.5639

 $z{=}1.067$ $M\approx (8{\pm}1){\cdot}10^{14}\,M_{sun}$

TABLE 2 Comparison of Mass Measurements for SPT-CL J0546-5345

Mass Type	Proxy	Measurement	Units	Mass Scaling Relation	$M_{200}^{\mathrm{a,b}} \ (10^{14} \ M_{\odot})$
Dispersion	Biweight	1179^{+232}_{-167}	km/s	σ - M_{200} (Evrard et al. 2008)	$10.4_{-4.4}^{+6.1}$
	Gapper	1170^{+240}_{-128}	$\rm km/s$	σ - M_{200} (Evrard et al. 2008)	$10.1^{+6.2}_{-3.3}$
	Std Deviation	$1138 {}^{+205}_{-132}$	km/s	σ - M_{200} (Evrard et al. 2008)	$9.3^{+5.0}_{-3.2}$
X-ray	Y_X	5.3 ± 1.0	$\times 10^{14}~M_{\odot} {\rm keV}$	Y_X - M_{500} (Vikhlinin et al. 2009)	8.23 ± 1.21
	T_X	$7.5^{+1.7}_{-1.1}$	keV	T_X - M_{500} (Vikhlinin et al. 2009)	8.11 ± 1.89
SZE	$Y_{ m SZ}$	3.5 ± 0.6	$\times 10^{14}~M_{\odot} {\rm keV}$	$Y_{\rm SZ} - M_{500} ({\rm A}10)$	7.19 ± 1.51
	S/N at 150 GHz	7.69		$\xi - M_{500} \text{ (V10)}$	$5.03 \pm 1.13 \pm 0.77$
Richness	N_{200}	80 ± 31	$\operatorname{galaxies}$	$N_{200} - M_{200} \text{ (H10)}$	$8.5\pm5.7\pm2.5$
	$N_{ m gal}$	66 ± 7	galaxies	$N_{ m gal} - M_{ m 200} \; ({ m H}10)$	$9.2 \pm 4.9 \pm 2.7$

Tink elephant, candidate 2. XMMU J2235.3-2557

Mullis et al, 2005 Jee et al. 2008

FIIIK elephant, candidate 5. SPT-CL J2106-5844

z=1.132

 $M_{SZ+x\text{-ray}} pprox (1.27 \pm 0.21) \cdot 10^{15} \, M_{sun}$

Foley et al 2011 Williamson et al. 2011

Two sources of statistical uncertainty

- 1. Sample variance the Poisson noise in counting rare objects in a finite volume
- 2. Parameter variance uncertainty due to fact that current data allow cosmological parameters to take a range of values

Parameter variance

(due to uncertainty in cosmo parameters)

95% sample variance limit for seeing ≥ 1 clusters (for $f_{sky}=1$)

Predicted abundance for $M > 10^{15} h^{\text{--}1} \ M_{sun}, \ z > 1.48$

Rule out Λ CDM \Rightarrow automatically rule out quintessence

Eddington bias

A.S. Eddington, MNRAS, 1913

For a steeply falling mass function,

observed mass was more likely to be scattered into observed range from lower M than for higher M

(≠ Malmquist bias: more luminous objects are more likely to scatter into the sample)

Results for the two pink elephant clusters vs. predictions for LCDM

Shown limits: 95% both sample and parameter variance for finding one cluster with >M, >z

black error bars:
masses
corrected for
Eddington bias

Potentially useful product of paper:

Fitting formulae to evaluate N_{clusters} that rule out LCDM at a given

- ✓ mass and redshift
- ✓ sample variance confidence
- ✓ parameter variance confidence
- $\checkmark f_{sky}$

Conclusions I: Falsifying DE

- Current (and, esp, future) data lead to strong predictions for D(z), G(z), H(z)
- Examples:
 - Flat LCDM: H(z=1) to 0.1%, D(z), G(z) to 1% everywhere
 - Quint: D(z), G(z) to 5%; one-sided deviations
 - Smooth DE: tight consistency relations can still be found
 - GR tests: γ to 5% (~0.02) even with arbitrary w(z)
- Total FoM=det(Cov)^{-1/2} improvement of >100 in the future
- it's wise to keep eyes open for mode exotic DE (and measuring PCs 3, 4, 5, 6...)

Conclusions II: 'Pink Elephants'

- It's important to be careful about the various statistical, not just systematic, effects in analyzing the abundance of rare, massive and distant clusters
- In particular, we find that the following effects have major effect on their likelihood
 - Parameter variance (in addition to sample variance)
 - Fair assessment of f_{sky}
 - Eddington bias
- So far none of the detected clusters rules out any models (contrary to some claims in the literature)
- If an unusually massive/distant observed cluster observed tomorrow rules out LCDM, it will rule out quintessence at the same time