

2419-13

Workshop on Large Scale Structure

30 July - 2 August, 2012

The South Pole Telescope: The Sunyaev-Zel'dovich Cluster Survey and Future Plans

B. Benson *University of Chicago*

The South Pole Telescope:

The Sunyaev-Zel'dovich (SZ) Cluster Survey and Future Directions

The CMB as a Backlight to the Universe

(image modified from NASA/WMAP)

The CMB Measures Structure Formation

(image modified from NASA/WMAP)

The South Pole Telescope (SPT)

Funded by NSF

Millimeter-Wavelength Telescope

- 10 meter primary mirror
- 1 deg² field of view

SPT-SZ Receiver Camera

- •~960 bolometers
- •3-colors: 100, 150, 220 GHz
- •Resolution of 1.6, 1.2, 1.0 arcmin (well-matched to high-z clusters, r_{500} (z=1.0) ~ 2 arcmin)

The 2500 deg² SPT-SZ Survey

- Status: 5-year survey finished (!!!) Nov. 2011
- 2500 deg² at high galactic latitude in Southern Sky.

Final survey depths of:

90 GHz: 40 uK_{CMB}-arcmin
150 GHz: 18 uK_{CMB}-arcmin
220 GHz: 70 uK_{CMB}-arcmin

(In these units, thermal Sunyaev-Zel'dovich (SZ) effect is 1.7 times brighter at 90 GHz than at 150 GHz.)

SPT 2500 deg² SZ Survey

Status: finished in *Nov. 2011*.

Most results shown today use **1/3** of this data.

The CMB as observed by WMAP and SPT

WMAP SPT

SPT relative to WMAP:

13x smaller beam (13' vs 1')

17x deeper (300 uK-arcmin vs 18 uK-arcmin)

The Sunyaev Zel'dovich (SZ) Effect

- Towards a massive cluster,
 1% of CMB photons scatter off of intra-cluster gas
- SZ Surface Brightness is redshift independent

Zoom in on an SPT map

~50 deg² from 2500 deg² survey

High signal to noise SZ galaxy cluster detections as "shadows" against the CMB!

SPT: CMB Power Spectrum

Cosmology from the CMB

- 1. SZ Cluster Survey
- 2. SZ Anisotropy
- 3. Future SZ Science

Cosmology from the CMB

- 1. SZ Cluster Survey
- 2. SZ Anisotropy
- 3. Future SZ Science

Finding Clusters in the SPT Survey

Example Massive SPT Clusters

SPT Cluster Sample Properties

Cluster Mass vs Redshift

- About 500 clusters in SPT 2500 deg² catalog
- Over 325 SPT clusters have measured redshifts; 80% are newly discovered clusters.
- High redshift: $\langle z \rangle \sim 0.55$ (20% of clusters at z > 0.8)
 - SPT has found more massive clusters at z > 0.4 than previously known
- SPT mass threshold falls with redshift, but with $M_{500}(z=0.6) > 3x10^{14} M_{sol}/h_{70}$

See, Reichardt et al 2012, arXiv:1203.5775

SPT Significance as a Mass Proxy

- For any cluster survey, challenge is to link cluster "observable" to cluster mass
- Ysz should have low (~7%) scatter with Mass (Kravstov, Vikhlinin, Nagai 2006)
- From simulations, signalto-noise in spatial filtered SPT map is a relatively good mass proxy (Vanderlinde et al 2010)
- Need to calibrate SZ significance to cluster mass!

Multi-wavelength Observations: Mass Calibration

- Multi-wavelength mass calibration campaign, including:
 - 1. X-ray with Chandra and XMM (PI: Benson, Vikhlinin)
 - 2. Weak lensing from Magellan (0.3 < z < 0.6) and HST (z > 0.6) (PI: High, Hoekstra)
 - 3. **Dynamical masses** from NOAO 3-year survey on Gemini (0.3 < z < 0.8) (PI:Stubbs), also VLT at (z > 0.8) (**PI: Bazin**, Mohr)

SPT Significance-Mass Calibration

Use X-ray (Yx-M) relation to calibrate SPT significance-mass relation:

 X-ray masses are calibrated with ~10-15% accuracy using measurements of low-redshift relaxed clusters assuming hydrostatic equilibrium (and crosschecked by weak lensing observations)

X-ray Pressure, $Yx (=M_{gas}Tx)$

Cosmological Analysis:

Test X-ray Method on 18 clusters (<10% of survey)

Developed Markov-Chain Monte Carlo (MCMC) method to vary cosmology and cluster observable-mass relation simultaneously, while accounting for SZ selection in a self-consistent way

6 Cosmology Parameters (plus extension parameters)

- ACDM Cosmology
 - $\Omega_{\rm m}h^2$, $\Omega_{\rm b}h^2$, $A_{\rm s}$, $n_{\rm s}$, τ , θs
- Extension Cosmology
 - w, Σm_{ν} , f_{NL} , N_{eff}

- 9 Scaling Relation Parameters
- X-ray (Yx-M) and SZ (ξ -M) relations (4 and 5 parameters):
 - A) normalization,
 - B) slope,
 - C) redshift evolution,
 - D) scatter,
 - F) correlated scatter

Benson et al 2011, arXiv: 1112.5435

wCDM Constraints

Test X-ray Method on 18 clusters (<10% of survey)

SPT_{CL} data improves dark energy $(w,\Omega_{\rm m})$ constraints by factor of 1.5

w, σ_8 , $\Omega_{\rm m}$ - 68, 95% Confidence Contours

CMB: WMAP7 + SPT (Komatsu et al 2011, Keisler et al. 2011)

BAO: (Percival et al. 2010)

SNe: (Amanullah et al. 2010)

Benson et al 2011, arXiv: 1112.5435

Neutrino Mass (Σm_{ν}) Constraints

Constraints on neutrino mass from the CMB are improved most significantly by breaking degeneracies with H_{θ} and σ_8

Neutrino Mass (Σm_{ν}) Constraints

• 95% upper limit on the sum of the neutrino masses (Σm_{ν}) of:

```
CMB < 1.1 \text{ eV}
+H<sub>0</sub>+BAO < 0.45 \text{ eV}
+H<sub>0</sub>+SPT<sub>CL</sub> < 0.28 \text{ eV}
```

- With CMB+H₀+SPT_{CL} data
 1-sigma standard deviation of +/- 0.09 eV
- Nearing > 0.05 eV mass limit from neutrino oscillations

 Σm_{ν} , σ_8 - 68, 95% Confidence Contours

CMB: WMAP7 + SPT (Komatsu et al 2011, Keisler et al. 2011)

BAO: (Percival et al. 2010)

 $H_0 = 73.8 + -2.4 \text{ km} / \text{s Mpc}$ (Riess et al 2011)

Benson et al 2011, arXiv: 1112.5435

SPT: CMB Power Spectrum

SPT: Neutrino Mass and the Number of Relativistic Species

CMB "damping tail" constrains effective number of relativistic particle species:

- $N_{\rm eff}$ = 3.91 +/- 0.42
- Σm_{ν} < 0.63 eV (at 95% confidence)
- Σm_{ν} = 0.34 +/- 0.17 eV

2-sigma preference for non-zero neutrino mass and an extra particle species

Keisler et al 2011, ApJ, 743, 28 (K11)

Benson et al 2011, arXiv: 1112.5435 (B11)

Cosmology from the CMB

1. SZ Cluster Survey

- Thats with 18 clusters, what about for the full survey?
- 2. SZ Power Spectrum
- 3. Future SZ Science

SPT Cluster Mass Calibration: X-ray XVP-80 Sample

Chandra X-ray observations of 80 most significant clusters at z > 0.4 from SPT survey

- 2.1 Msec Proposal (PI: Benson),
 ~1% of Chandra's total lifetime
- Primary Cosmology Goals:
 - I) Dark Energy, w Calibrate SPT cluster mass with 10% accuracy to obtain systematics limited constraint on w of ~15%
 - 2) Angular Diameter Distance relation Combine Ysz, Yx to use clusters as "standard ruler", constrain geometry of universe to high-z

Weak Lensing: Magellan, Hubble

Weak lensing measures gravitational deflection of light from background galaxies to measure total cluster mass

HST Weak Lensing Sample (PI: High)

- Magellan 19 clusters (0.3 < z < 0.6)
- **Hubble** 14 clusters (0.6 < z < 1.4)
- Primary Goal
 - 1. Mass Calibration of the SPT survey (~5% mean, ~10% redshift evolution)

Test weak lensing analysis on 220 deg² mock catalogs from Dark Energy Survey (DES) (see High et al. 2012, 1205.3103)

SPT Cosmological Constraints:

2500 deg² (projected)

SPT 2500 deg² survey will detect ~500 clusters, assuming mass calibration expected with X-ray and Lensing programs then:

- Combined CMB + SPT cluster survey will constrain $\delta w \sim$ 5%, *independent* of geometric cosmological constraints from SNe, BAO

Dark Energy Survey (DES) and SPT

- Wide field (2.2 deg²) optical camera for 4-meter Blanco telescope (Chile)
- 5-year optical survey (2012-2016)
 to cover ~5000 deg² which will detect ~100,000 clusters out to z~1
- Multiple probes of dark energy (cluster survey, weak lensing, BAO, SN)
 - Coordinated to overlap with SPT
 - -Combined DES + SPT cluster survey will improve DES dark energy figure-of-merit by ~3 (Wu, Rozo, Wechsler 2009)

Cosmology from the CMB

- 1. SZ Cluster Survey
- 2. SZ Anisotropy
- 3. Future SZ Science

SPT: CMB Power Spectrum

thermal Sunyaev-Zel'dovich (tSZ) effect

There is a "thermal SZ background" due to all the hot gas in groups and clusters along the lines of sight: SZ Power $\sim (\sigma_8)^{8.3}$

CMB

kinetic Sunyaev-Zel'dovich (kSZ) effect

CMB

CMB photon scatters on free electrons moving with respect to the CMB.

"Doppler" signal.

There is a "kinetic SZ background" due to both of these effects, sensitive to duration of reionization.

SPT 3-band Power Spectrum Analysis

Reichardt et al. 2011, astro-ph/1111.0932

6 unique spectra

SPT Power Spectrum: Model Fitting

Reichardt et al. 2011, astro-ph/1111.0932

SZ Power Spectrum Constraints

kSZ vs tSZ Constraints

SPT SZ power spectrum constraints:

$$tSZ = 3.65 + /- 0.69 \mu K^2$$

 $kSZ < 2.8 \mu K^2 (at 95% CL)$

- tSZ power ~2x low relative to predictions (Sehgal et al 2010)
- Several possible explanations:
 e.g., astrophysical feedback
 (AGN, etc.), non-thermal
 pressure support, (see, e.g,
 Shaw et al. 2010)
- kSZ power is also low (expect ~2 μK² from post-reionization kSZ)

Reichardt et al 2011, arXiv: 1111.0932

SZ Power Spectrum Constraints

with tSZ-CIB correlation

 Including a free parameter for a tSZ-CIB correlation weakens constraints:

```
tSZ = 3.26 +/- 1.06 μK<sup>2</sup>
kSZ < 6.7 μK<sup>2</sup> (at 95% CL)
tSZ-CIB correlation =
-0.18 +/- 0.11
```

- kSZ still provides useful constraint on duration of reionization (Zahn et al. 2011): $\Delta z < 8$ at 95% confidence
- CIB measurements needed to break tSZ-CIB degenercy (SPT 100 deg² Herschel survey finished last month to do this)

Reichardt et al 2011, arXiv: 1111.0932

Cosmology from the CMB

- 1. SZ Cluster Survey
- 2. SZ Anisotropy
- 3. Future of SZ Science

The Next Frontier:

The Polarization of the CMB

- Quadrupole anisotropy introduces a polarization from Thomson scattering near surface of last scattering
- Polarization pattern can be decomposed into "E" and "B" modes, that have only grad and curl components
- Density fluctuations produce only "E" modes, no handedness
- •"B" modes can be created by:
 - –primordial gravity waves from Inflation
 - lensing of the CMB from large scale structure

Smith et al 2008

CMB Measurements so far:

Closing in on Inflation!

see (QUAD) Brown et al., arXiv:0906.1003 & (BICEP) Chiang et al., arXiv:0906.1181

SPTpol:

A new polarization-sensitive camera for SPT

Science from SPTpol -

"B-mode" CMB Polarization:

- 1. Detection of "B-mode" power spectrum
- 2. Neutrino mass from CMB lensing
 - "de-lens" large angular scales
- 3. Energy scale of inflation

Temperature Survey:

4. Deeper cluster survey

Status:

- First light Jan. 26, 2012.
- Started a 4-year, 625 deg² survey

(360x) 100 GHz detectors, (Argonne National Labs)

(1176x) 150 GHz detectors (NIST)

SPTpol: Projected B-mode Power Spectrum

SPTpol will make a high signal-to-noise detection of the lensing B-modes With Planck priors; the 4-year 625 deg² SPTpol survey expects to constrain δr =0.028 and $\delta (\Sigma m_{\nu})$ =0.09 eV

SPT-3G: The Next Generation Camera for the SPT

2001:ACBAR 16 detectors

2007: SPT 960 detectors

2012: SPTpol ~1600 detectors

2016: SPT-3G

~15,200 detectors

ACBAR was the first experiment to make a "background limited" detector, since then we've just been trying to make more of them

SPT-3G: The Next Generation Camera for the SPT

2001:ACBAR 16 detectors

2007: SPT 960 detectors NET **SZ Mapping** (noise equivalent temperature) **Speed** ($uK CMB s^{0.5}$) **ACBAR** 90

SPT-3G detectors

ACBAR wl make a "bl since then

ACT 30 9 SPT 18 **25** 40 **SPTpol** ~14 SPT-3G 850 ~3.5 make morb

SPT

				230 deg ² (9% of SPT Survey)
	Area (deg²)	Beamsize (arcmin)	Map Noise (uK-arcmin)	
WMAP	30,000	13	300	
Planck	30,000	5	45	
SPT	2500	1	18	

SPT

				230 deg ² (9% of SPT Survey)
	Area (deg²)	Beamsize (arcmin)	Map Noise (uK-arcmin)	
WMAP	30,000	13	300	
Planck	30,000	5	45	
SPT	2500	1	18	
SPTpol	600	1	5	

SPT

					230 deg ² (9% of SPT Survey)
		Area (deg²)	Beamsize (arcmin)	Map Noise (uK-arcmin)	
	WMAP	30,000	13	300	
	Planck	30,000	5	45	
	SPT	2500	1	18	
	SPTpol	600	1	5	10x
	SPT-3G	2500	1	2 ←	deeper than SPT!

SPT-3G:

Projected B-mode Power Spectrum

- -Planck, in principle, will only make weak B-mode detection
- -SPTpol will make pioneering B-mode measurements
- -SPT-3G will be deep enough to:
 - improve neutrino mass constraints (over Planck)
 - "de-lens" at largescales and improve "r" constraint

Credit: T. Crawford

SPT-3G: Cluster Survey

- -10x increase in number of clusters over SPT
 - 4000 clusters at 99% purity threshold
- -Could improve DES dark energy figure of merit by ~4 by calibrating scatter in richness-mass relation (Wu et al. 2010)
- -CMB-cluster lensing should provide a 3% cluster mass calibration (per 4000 clusters)
 - competitive with mass calibration from stacked weak-lensing (Rozo et al. 2011)

Credit: B. Benson

SPT-3G:

Testing Gravity on Large-scales

kSZ Pairwise Velocity Signal

(Hand et al., ACT Collaboration, 1203.4219)

Galaxy clusters tend to fall towards each other (w.r.t. Hubble flow). For a given pair, the high-z (low-z) cluster tends to move towards (away from) us => Blue Shift differential CMB Red Shift signal from kSZ effect. Observer

Project a **33-sigma** detection of the pairwise kSZ signal for SPT-3G and a DES-like cluster sample with photoz errors.

This provides a novel probe of gravity on ~50-200 Mpc scales and competitively constrains modified theories of gravity (f(R)/ chameleon and DGP) on very large length scales.

Credit: R. Keisler

51

SPT-3G:

Measuring the Duration of Reionization

- Reionization induces kSZ signal from contrast in ionized bubble size
- Planck constrains mean redshift ($z\sim10$), SPT-3G constrains duration
- Can constrrain duration of epoch of reionization to $\delta z \sim 1$
- -Shape of kSZ spectrum can also test reionization models

Credit: C. Reichardt

Summary

- Exciting data sets coming out of SZ surveys: SPT, ACT, and Planck
- SZ surveys are now providing large cluster samples that are useful for studying the astrophysics of massive cluster formation and also providing interesting cosmological constraints
- Mass calibration is critical to realizing full power of surveys:
 - need to incorporate multiwave information (X-ray, WL, dispersions)
 - simulations key to understanding bias and correlations of observables
 - strong synergies with future optical surveys (e.g., DES, LSST), both from clusters and CMB lensing (Gil Holder's talk)
- SZ anisotropy cosmological constraints are currently limited by combination of uncertain astrophysics in low-mass clusters and correlation with CIB (will be improved soon via Herschel)
- Current and future CMB polarization experiments will continue to improve on all of the above, also allowing new measurements of:
 - CMB-cluster lensing, pairwise velocities, SZ polarization, etc.

