Africa Adaptation Programme

e-Infrastructure for climate data and Information Stefano Cozzini

CNR/IM eLAB and ICTP - Trieste

Scientific Institutions in Trieste (2)

SISSA:

- International School of Advanced Study
- phD courses in different computational science areas
- Democritos National Simulation Center for CNR
 - Founded in 2002: computational material science

• ICTP:

- International Center for Theoretical Physics
- Science (and computational science) in developing countries

They all need computational e-infrastructures

The joint laboratory for e-science: eLab

Goal:

provide a *computational environment* to satisfy the different requirements posed by in our institutions and beyond

- Elements of computational environment and activities
 - Platforms (hardware + system software)

e-Infrastructure design/installation/management

Applications (simulation/data management software)

Software developing/advanced services

People

Joint DEMOCRITOS/SISSA Laboratory for @-science

ICTP activities for Africa Adaptation progamme

- ICTS section
 - Activities in setting up e-infrastructure in Africa
 - Contributions to scientific software development for climate models and data
- Earth System Physics (ESP) section:
 - It studies a wide spectrum of the Earth system, from its fluid components (oceans and the atmosphere) to the planet's interior.
 - The ESP section maintains a range of models and datasets
 - coordinates the Regional Climate research NETwork (RegCNET), encompassing over 1000 participants worldwide.
 - Maintain a Regional Climate Model (REGCM4) widely used and adopted in many african countries

ICTP and eLab joint training activities

- Topics: scientific computing and HPC GRID Infrastructure
- More than 10 events from 2002 in Trieste for overall countries
 - More than 400 people trained
 - About 100 from African countries
- A few dedicated events to Africa:
 - Ghana 2005; 2 weeks training school on Linux cluster in Kumasi
 - Within the Special program for Africa:
 - Three weeks Trieste June 2009
 - 1 week Regional school in August 2010 in Addis Ababa
 - 1 week regional school in Cameroon (22-27 November 2010)

ICTP eLab Past e-infrastructure initiatives in Africa: some examples

Ghana 2005

Software installation of the existing HPC facility for climate modeling, Kofi Annan
 Centre of Excellence for ICT (KACE), Accra,
 Ghana

Kenya 2007

ICTP(OEA) donation of 4 node (16 CPU)
 HPC cluster including installation of software for climate prediction to ICPAC, Nairobi, Kenya.

Congo 2008

ICTP(OEA) donation of 1 node (8 CPU) HPC server including installation of software for material science research at the Dept. of Physics, University of Kinshasa.

Computational Physics (HPC) Centres

2 actions:

Infrastructure Development

-Implementation of low cost Linux based commodity clusters for computanioally intensive scientific research

Capacity building (sustainability and self-reliance in)

- _Scientific user community driving as main force to setup the infrastructure
- _Application/user support for e-infrastructure

African partners: Ivory Coast

- University of Cocody,
 Abidjan, Ivory Coast
 - Climate modeling HPC centre (West Africa)
 - Climate modeling HPC application support.
 - Infrastructure development – 20K planned for 2011

African partners: Ethiopia

- Addis Ababa University,
 Addis Ababa, Ethiopia
 - Climate modeling HPC centre (Eastern Africa)
 - Climate modeling HPC application support.
 - Infrastructure development: 25K done October 2009
 - 1 week meeting of African installation team in collaboration with a 1 week meeting on Climate modeling.

Second part:

Joint activity to setup a multi-tier data infrastructure for AAP

Guidelines

- Identify the best technical solution to solve user requirements
- Leverage on previous success stories:
 - Exploit Technical solution already in place
 - Exploit the same deployment strategy
- Team up with organization/institutions that share the similar common requirement to share effort and ideas
 - (Do not re-invent the wheel approach)

Concepts:

- The data infrastructure should be distributed and easily available to all users
- The data infrastructure which would house the datasets would also have the capability of providing computationally-intensive services for data analysis and visualization
- The data analysis and visualization component would be provided through a web portal with a collection of Open source tools, data and methods (IDV, Google Earth, TRENDS, NSFM, OpenGIS, R, RClimdex, netCDF, etc)

Multi-tier infrastructure for climate data management in AAP countries

Tier 0
Large Storage
General data services

Tier 1: Regional storage facilities
Advanced local data services

Tier 2: users
Web tools to access data

Some details of multi-tier infrastructure

Tier o:

The central node large enough to host considerable amount of data

Hosted by a ICTP:

large user community there with a quite common need

e-Infrastructure expertise in place

Tier 1:

African regional centers (5/6)

Large enough to guarantee the all together provide the same amount of data of tier o

Hosted by AAP countries where competences and needs and capability are already in place

Tier 2:

All AAP countries

Basic usage based on web browser

Advanced/ or "ad hoc" usage may require some light-way User Interface

software

Why a multi-tier infrastructure?

Key Reasons

Climate modeling is far too expensive for countries to do it on their own Mission critical system based on the data repository should rely on high availability e-infrastructure

Economics of scale:

- Cheaper and more availably to have a shared system across
- Long term reasons:

Sustainable approach on long term basis: no single point of failures

Opportunity for Africa to be on cutting-edge approach to address the problem of data information

Actions

- education/training
- hardware acquisition and installation
- software deployment
- data collection/integration

Education and training:

- 2 kinds of training activities:
 - toward sys.adm.
 - to allow installation and maintenance of the storage servers and data management software
 - toward final users
 - to make them use efficiently the infrastructure
- In both training activities we invite Unidata to mount a course on tools and methods
 - Specifically IDV and RAMMADA THREEDS

First training events: february/march 2011

- Sys. Adm. training: 1 week in Trieste
 - 12/15 people (2/3 people team from tier 1 centers) + lecturers
 - january/february 2011
- Early adopters training:
 - 1 week in Trieste after the previous one
 - 5/10 people + lecturers (shared with previous activities)
- Dates march 2011 (close to the Cordex meeting)
- hosting Institution ICTP

Second round training events:

- installation events in tier 1 locations:
 - each sys. adm. team will proceed in installing and configuring in its location the data server
 - installation is done in collaboration with an expert
- tutorial events for local people conducted by early adopters
 - materials and tools discussed in event 1 will be proposed to local users
- dates: TO Be DEFINED
- duration one week each:
 - two days for installation
 - three days for tutorials

Hardware&Software activities

- Tier-zero hardware
 - expansion/allocation of storage capabilities at ICTP
 - Target dimension : 100 Terabyte
 - Installation and Customization of specific tools for data management
- Tier-one hardware for 5/6 site
 - acquisition of two redundant data servers
 - Target dimension: 20 Terabyte
 - Installation on tier 1 sites and associated training/user support
- Software development of lightweight user interfaces for tier 2

Data acquisition and integration

- Sources:
 - Climate data:
 - IPCC data sets / Cordex Experiments/ Amma project/ NCEP (USA) / ECMWF Data/ CRU datasets / UK metoffice / AAP countries DATASET
 - Social Economic data:
 - Population data / livelihoods living standard
 - Hazard data
 - Floods/Drought/Storms etc...
- Data integration procedures should be put in place
 - Formidable task

What is data integration?

- For applications where there are a number of data sources (recall previous slide)
 - _Geographically distributed
 - _ Having data on different platforms
 - _(may be) on systems with different query capabilities (e.g., different DBMSs, files, spreadsheets)
 - _ Perhaps even having different data models
 - _ Having different schema
 - _BUT about the common, general theme of climate change
- We plan to construct a general-purpose information system
 - _ all these data sources can be co-accessed as if they belong to a single data source
 - _ It can produce "combined information objects" on-demand for ad hoc queries to facilitate climate change analyses performed through other software products (workflows, atlases, statistical packages ...)
 - _ It is integrated with AAP knowledge management system and other components

Conclusions

- Lesson learned:
 - No infrastructure if there is no need of it
- Sustainability through user need
- Many projects shared common need
 - Successful experiences already in place
 - Room for fruitful collaboration
- Data integration requires a considerable amount of efforts
 - We need to strongly integrate data e-infrastructure with knowledge management system