



2440-9

#### 16th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

10 - 12 January 2013

RPA correlation potential in the adiabatic connection fluctuation-dissipation formalism

Stefano de Gironcoli SISSA, Trieste Italy

# RPA Correlation Potential from Adiabatic Connection Fluctuation-Dissipation Theory (ACFDT)

#### Stefano de Gironcoli

SISSA

#### Viet-Huy Nguyen, Ngoc Linh Nguyen, Nicola Colonna

January 11, 2013



- ACFDT introduction
- RPA Self-Consistent potential
- going (sistematically) beyond RPA

### Some Remarks on DFT Calculations

- DFT is an exact theory BUT approximations for the exchange-correlation energy are required for practical applications
- LDA, GGAs succesfully predict properties of a wide class of electronic systems

Local or Semi-Local nature of LDA, GGAs functionals

$$E_{xc}^{LDA} = \int d\mathbf{r} \ \varepsilon_{xc}^{LDA} \left[ n(\mathbf{r}) \right] n(\mathbf{r})$$
$$E_{xc}^{GGA} = \int d\mathbf{r} \ \varepsilon_{xc}^{GGA} \left[ n(\mathbf{r}), \nabla n(\mathbf{r}) \right] n(\mathbf{r})$$

 There are many systems where DFT within LDA and GGAs fails e.g. strongly correlated materials AND weakly vdW bonded compounds

#### ACFDT : an exact definition for the correlation energy

Adiabatic Connection formula for correlation energy:

$$E_{c} = -\frac{1}{2\pi} \int_{0}^{1} d\lambda \int d\mathbf{r} d\mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \left\{ \int_{0}^{\infty} du \left[ \chi_{\lambda}(iu) - \chi_{KS}(iu) \right] \right\}$$

where  $\chi_{\lambda}(iu)$  is given by

$$\chi_{\lambda}(iu) = \chi_{KS}(iu) + \chi_{\lambda}(iu) \left[\lambda v_{c} + f_{xc}^{\lambda}(iu)\right] \chi_{KS}(iu)$$

#### ADVANTAGES

- practical (so to speak) way to calculate xc-energy explicitly
- theoretical framework for systematic development of functionals

#### LIMITATIONS

- computationally very demanding
- affected by a circular argument?

Full-Interacting Hamiltonian

$$H = T + W + v_{ext} \quad \Rightarrow \quad |\Psi^{GS}\rangle, n(\mathbf{r})$$

Non-Interacting (Khon-Sham) Hamiltonian

$$H_{KS} = T_s + v_{KS} \quad \Rightarrow \quad |\Phi_{KS}^{GS}\rangle, \ n(\mathbf{r})$$

then we introduce fictitious systems with scaled interaction  $\lambda W$  wich connect the KS ( $\lambda = 0$ ) with the Many-Body system ( $\lambda = 1$ )

#### Adiabatic Connection

$$egin{aligned} \mathcal{H}_{\lambda} &= \mathcal{T} + \lambda \mathcal{W} + v_{ext}^{\lambda} \ v_{ext}^{\lambda=0} &= v_{\mathcal{KS}} \ v_{ext}^{\lambda=1} &= v_{ext} \end{aligned}$$
 $egin{aligned} \mathcal{W}_{\lambda}^{\lambda=1} &= v_{ext} \ \mathcal{W}_{\lambda}^{GS} |\hat{n}(\mathbf{r})| \Psi_{\lambda}^{GS} 
angle &= n(\mathbf{r}) \end{aligned}$ 

According to Hellmann-Feynman theorem

$$\frac{dE_{\lambda}}{d\lambda} = \langle \Psi_{\lambda} | \frac{dH_{\lambda}}{d\lambda} | \Psi_{\lambda} \rangle = \langle \Psi_{\lambda} | W | \Psi_{\lambda} \rangle + \langle \Psi_{\lambda} | \frac{\partial v_{ext}}{\partial \lambda} | \Psi_{\lambda} \rangle$$

Integrating over  $\lambda$  beetween 0 and 1

$$E_{\lambda=1} = E_{\lambda=0} + \int_0^1 d\lambda \, \langle \Psi_\lambda | W | \Psi_\lambda \rangle + \int d\mathbf{r} \, n(\mathbf{r}) [v_{e\times t}(\mathbf{r}) - v_{KS}(\mathbf{r})]$$

With the usual decomposition of energy functional

$$E_{\lambda=1} = T_s + E_H + E_{xc} + \int d\mathbf{r} \ n(\mathbf{r}) v_{ext}(\mathbf{r})$$
$$E_{\lambda=0} = T_s + \int d\mathbf{r} \ n(\mathbf{r}) v_{KS}(\mathbf{r})$$

we end up with

$$E_H + E_{xc} = \int_0^1 d\lambda \langle \Psi_\lambda | W | \Psi_\lambda \rangle$$

Introduction RPA Self-Consistent Potential Beyond Random Phase Approximation

$$\langle \Psi_{\lambda} | W | \Psi_{\lambda} \rangle = \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} n_{\lambda}^{(2)}(\mathbf{r}, \mathbf{r}')$$

$$n_{\lambda}^{(2)}(\mathbf{r}, \mathbf{r}') = \langle \delta \hat{n}(\mathbf{r}) \delta \hat{n}(\mathbf{r}') \rangle_{\lambda} + n(\mathbf{r}) n(\mathbf{r}') - \delta(\mathbf{r} - \mathbf{r}') n(\mathbf{r})$$

#### **Fluctuation-Dissipation Theorem**

$$n_{\lambda}^{(2)}(\mathbf{r},\mathbf{r}') = -\int_{0}^{\infty} \frac{du}{\pi} \chi_{\lambda}(\mathbf{r},\mathbf{r}';iu) + n(\mathbf{r})n(\mathbf{r}') - \delta(\mathbf{r}-\mathbf{r}')n(\mathbf{r})$$

#### Exchange-Correlation Energy from ACFDT

$$E_{xc} = -\frac{1}{2\pi} \int_0^1 d\lambda \int d\mathbf{r} d\mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \left\{ \int_0^\infty du \chi_\lambda(\mathbf{r}, \mathbf{r}'; iu) + \pi \delta(\mathbf{r} - \mathbf{r}') n(\mathbf{r}) \right\}$$

Replacing  $\chi_{\lambda}$  with  $\chi_{KS} = \chi_0$ 

$$E_{x} = -\frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{|\sum_{i}^{occ} \phi_{i}^{*}(\mathbf{r})\phi_{i}(\mathbf{r}')|^{2}}{|\mathbf{r} - \mathbf{r}'|}$$

The exchange-correlation energy can thus be separated

$$E_{xc} = E_x + E_c = E_x - \frac{1}{2\pi} \int_0^1 d\lambda \int_0^\infty du \operatorname{Tr} \left\{ v_c \left[ \chi_\lambda(iu) - \chi_0(iu) \right] \right\}$$

Adiabatic connection formula for correlation energy

$$E_{c} = -\frac{1}{2\pi} \int_{0}^{1} d\lambda \int_{0}^{\infty} du \operatorname{Tr} \left\{ v_{c} \left[ \chi_{\lambda}(iu) - \chi_{0}(iu) \right] \right\}$$
$$\chi_{\lambda}(iu) = \chi_{0}(iu) + \chi_{\lambda}(iu) \left[ \lambda v_{c} + f_{xc}^{\lambda}(iu) \right] \chi_{0}(iu)$$

Random Phase Approximation (RPA)

**Random Phase Approximation**:  $f_{xc}^{\lambda} = 0$ 

$$\chi_{\lambda}^{RPA} = \chi_0 + \chi_0 [\lambda \upsilon_c] \chi_{\lambda}^{RPA}$$

• The Kohn-Sham (non-interacting) response function

$$\chi_0(\mathbf{r},\mathbf{r}';iu) = \sum_{i,j} (f_i - f_j) \frac{\phi_i^*(\mathbf{r})\phi_j(\mathbf{r})\phi_j^*(\mathbf{r}')\phi_i(\mathbf{r}')}{\epsilon_i - \epsilon_j + iu}$$

determines the  $(\lambda$ -)interacting response

#### Implementation

• Define generalized eigenvalue problem

$$\chi_0(iu) |\omega_\alpha(iu)\rangle = a_\alpha(iu) v_c^{-1} |\omega_\alpha(iu)\rangle$$

• In RPA

$$\chi_{\lambda} = \chi_{0} + \lambda \chi_{0} v_{c} \chi_{\lambda} \Rightarrow \quad \chi_{\lambda} |\omega_{\alpha}\rangle = \frac{a_{\alpha}}{1 - \lambda a_{\alpha}} v_{c}^{-1} |\omega_{\alpha}\rangle$$

 $\Rightarrow \lambda$ -integration is done analytically

$$E_{c} = \frac{1}{2\pi} \int_{0}^{\infty} du \sum_{\alpha} \{a_{\alpha}(iu) + \ln(1 - a_{\alpha}(iu))\}$$

#### dielectric matrix band structure

• Moreover: Most eigenvalues  $a_{\alpha}$  are close to zero

 $\epsilon_{RPA} = 1 - v_c \chi_0$ 



A. Baldereschi and E. Tosatti, Solid State Commun. 29, 131 (1979)
R. Car, E. Tosatti, S. Baroni, and S. Leelaprute, PRB 24, 985 (1981)
Mark S. Hybertsen and Steven G. Louie, PRB 35, 5585 (1987)
H. Wilson, F. Gygi, and G. Galli, PRB 78, 113303 (2008)
H. Wilson, D.Lu, F. Gygi, and G. Galli, PRB 79, 245106 (2009)

Iterative diagonalizatin of  $\chi_0$ 

• Matrix elements of  $\chi_0$  are efficiently computed by Density Functional Perturbation Theory :  $\Delta n = \chi_0 \Delta V_{SCF} \ (= \chi \Delta V_{ext})$ 

S.Baroni, A.DalCorso, P.Giannozzi, and SdG, Rev.Mod.Phys. 73, 515 (2001)

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i - iu \end{bmatrix} \Delta \psi_i(\mathbf{r}) = -\Delta V_{SCF}(\mathbf{r}) \psi_i(\mathbf{r}) \\ \Delta n(\mathbf{r}) = 2Re \left\{ \sum_{i \in \text{occ.}} \psi_i^* \Delta \psi_i \right\} \\ \Delta V_{SCF}(\mathbf{r}) = \Delta \nabla_{ext}(\mathbf{r}) + \Delta \nabla_{H}(\mathbf{r}) + \Delta \nabla_{xc}(\mathbf{r}) \end{cases}$$

A number of applications have been made ...

- Molecular Crystals (Benzene and Methane)
- Self assembled Monolayers on Au
- Water
- vdW-dimers

 $E_c^{RPA}$  has been computed so far as a post-scf correction...

#### Importance of a self-consistent potential

 $E_c^{RPA}$  has been computed so far as a post-scf correction...



H.V. Nguyen, and G. Galli, J.Chem. Phys.132, 044109 (2010)

Stefano de Gironcoli Correlation Energy from ACFDT

### RPA correlation potential

$$v_c(\mathbf{r}) = \frac{\delta E_c}{\delta n(\mathbf{r})}$$
 can be calculated via an OEP costruction

$$v_{c}(\mathbf{r}) = \int \frac{\delta E_{c}}{\delta V_{KS}(\mathbf{r}')} \times \frac{\delta V_{KS}(\mathbf{r}')}{\delta n(\mathbf{r})} d\mathbf{r}' = \int \chi_{0}^{-1}(\mathbf{r},\mathbf{r}') \frac{\delta E_{c}}{\delta V_{KS}(\mathbf{r}')} d\mathbf{r}'$$

requires the knowledge of

 $\frac{\delta a_{\alpha}(iu)}{\delta V_{KS}(\mathbf{r})}$ 

where  $a_{\alpha}$  is an eigenvalue of the generalized eigenvalue problem and is a second order derivative of the KS energy w.r.t. the eigenpotential  $\omega_{\alpha}$ 

$$a_{lpha}(iu) = \langle \omega_{lpha}(iu) | \chi_0(iu) | \omega_{lpha}(iu) 
angle = 2Re \left\{ \sum_{i \in \text{occ.}} \langle \psi_i | \omega_{lpha} | \Delta \psi_i^{lpha} 
angle 
ight\}$$

#### The derivative of the energy w.r.t the effective potential

Applying the 2N+1 theorem

$$\begin{split} \delta a_{\alpha} &= \sum_{i \in \text{occ.}} \langle \Delta \psi_{i}^{\alpha} | \delta V_{\text{KS}} | \Delta \psi_{i}^{\alpha} \rangle - \langle \Delta \psi_{i}^{\alpha} | \Delta \psi_{i}^{\alpha} \rangle \langle \psi_{i} | \delta V_{\text{KS}} | \psi_{i} \rangle \\ &+ \sum_{i \in \text{occ.}} \langle \delta \psi_{i} | \omega_{\alpha} | \Delta \psi_{i}^{\alpha} \rangle - \langle \delta \psi_{i} | \Delta \psi_{i}^{\alpha} \rangle \langle \psi_{i} | \omega_{\alpha} | \psi_{i} \rangle + c.c. \end{split}$$

i∈occ.

where

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i\right]\delta\psi_i(\mathbf{r}) = -\delta V_{KS}(\mathbf{r})\psi_i(\mathbf{r})$$

- The first line can trivially be calculated for any perturbing potential  $\delta V_{KS}$ , hence  $\longrightarrow \frac{\delta a_{\alpha}}{\delta V_{KS}}$
- The second line is more complicated but can also be re-expressed in a way that it can be calculated easily for any perturbing potential  $\delta V_{KS}$ .

For iu = 0

$$\delta a_{\alpha} = \sum_{i \in \text{occ.}} \langle \Delta \psi_{i}^{\alpha} | \delta V_{KS} | \Delta \psi_{i}^{\alpha} \rangle - \langle \Delta \psi_{i}^{\alpha} | \Delta \psi_{i}^{\alpha} \rangle \langle \psi_{i} | \delta V_{KS} | \psi_{i} \rangle$$

+ 
$$\sum_{i \in \text{occ.}} \langle \psi_i | \delta V_{KS} | \Delta^{(2)} \psi_i^{\alpha} \rangle + c.c.$$

where

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i \end{bmatrix} \Delta \psi_i(\mathbf{r}) = -\omega_\alpha(\mathbf{r}) \psi_i(\mathbf{r}) \\ \begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i \end{bmatrix} \Delta^{(2)} \psi_i(\mathbf{r}) = -\omega_\alpha(\mathbf{r}) \Delta \psi_i^\alpha(\mathbf{r}) \\ + \Delta \psi_i^\alpha(\mathbf{r}) \langle \psi_i | \omega_\alpha | \psi_i \rangle \end{bmatrix}$$

• The cost is affordable: Obtaning 
$$\frac{\delta E_c}{\delta V_{KS}(\mathbf{r})}$$
 costs only twice  $E_c$ 

solution of the OEP problem

$$v_c(\mathbf{r}) = \frac{\delta E_c}{\delta n(\mathbf{r})}$$
 can be obtained by

$$v_c(\mathbf{r}) = \int \chi_0^{-1}(\mathbf{r}, \mathbf{r}') \frac{\delta E_c}{\delta V_{KS}(\mathbf{r}')} d\mathbf{r}'$$

exploiting the eigenvalue decomposition of  $\chi_0^{-1}(\mathbf{r}, \mathbf{r}')$ .

$$v_{c}(\mathbf{r}) = \sum_{\alpha} \omega_{\alpha}(\mathbf{r}) \frac{1}{a_{\alpha}} \langle \omega_{\alpha} | \frac{\delta E_{c}}{\delta V_{KS}} \rangle$$

OEP solution requires many  $\chi_0$  eigenpotentials.

#### Self-consistent potential



Numerical stability is somewhat a problem but can be kept under control.

#### Hydrogen dimer dissociation



dissociation behaviour correctly described self-consistent potential is not very important

#### Self-consistent potential for Ar<sub>2</sub>



## Ar<sub>2</sub> binding energy



dissociation behaviour correctly described binding underestimated self-consistent potential is not very important

### Self-consistent potential for Be<sub>2</sub>



Beryllium dimer dissociation

Self-consistent potential makes a significant difference in this case



Beryllium dimer is unstable...

#### Beryllium dimer dissociation



Stefano de Gironcoli Correlation Energy from ACFDT

#### Beryllium dimer dissociation



XOEP potential gives "significantly" higher energies w.r.t. HF

- should we use HF exchange instead ?
- is it a problem of the 2-el pseudopotential we're using ?
- is it a real feature of RPA ?

#### Beyond Random Phase Approximation (RPA)

**Random Phase Approximation**:  $f_{xc}^{\lambda} = 0$ 

$$\chi_{\lambda}^{RPA} = \chi_0 + \chi_0 [\lambda \upsilon_c] \chi_{\lambda}^{RPA}$$

 $\lambda v_c$  is not the only term in the kernel linear in  $\lambda$ 

$$E_{xc}^{\lambda} = \lambda E_x - \frac{1}{2\pi} \int_0^{\lambda} d\mu \int_0^{\infty} du \operatorname{Tr} \left\{ v_c \left[ \chi_{\mu}(iu) - \chi_0(iu) \right] \right\} =$$
$$= \lambda E_x + o(\lambda^2)$$
$$\Downarrow$$
$$f_{xc}^{\lambda} = \frac{\delta^2 E_{xc}^{\lambda}}{\delta n \delta n} = \lambda f_x + o(\lambda^2)$$

#### Beyond RPA: including exchange kernel

From **Exact Exchange** :  $f_{xc}^{\lambda} = \lambda f_x$ 

$$\chi_{\lambda}^{(1)} = \chi_{0} + \chi_{0} [\lambda \upsilon_{c} + \lambda f_{x}] \chi_{\lambda}^{(1)}$$

$$E_{xc}^{\lambda} = \lambda E_{x} - \frac{1}{2\pi} \int_{0}^{\lambda} d\mu \int_{0}^{\infty} du \operatorname{Tr} \left\{ \upsilon_{c} \left[ \chi_{\mu}^{(1)}(iu) - \chi_{0}(iu) \right] \right\} + \frac{1}{2\pi} \int_{0}^{\lambda} d\mu \int_{0}^{\infty} du \operatorname{Tr} \left\{ \upsilon_{c} \left[ \chi_{\mu}(iu) - \chi_{\mu}^{(1)}(iu) \right] \right\} = \lambda E_{x} + E_{c,\lambda}^{(2)} + \Delta^{(2)} E_{c,\lambda}$$

 $\chi_{\lambda}^{(1)} \text{ Kernel } \propto \lambda \implies E_{c,\lambda}^{(2)} \sim o(\lambda^2)$ 

Furthermore one can show that

$$\chi_{\lambda} = \chi_{\lambda}^{(1)} + \chi_{\lambda} [f_{xc}^{\lambda} - \lambda f_{x}] \chi_{\lambda}^{(1)}$$

 $\chi_{\lambda}$  Kernel ~ o( $\lambda^2$ )  $\implies \Delta^{(2)}E_{c,\lambda} \sim o(\lambda^3)$ 

#### A systematic improvement for $E_{xc}$

Next step: 
$$\frac{\delta^2 E_{c,\lambda}^{(2)}}{\delta n \delta n} \rightarrow \lambda^2 f_c^{(2)} \rightarrow \chi_{\lambda}^{(2)} = \chi_{\lambda}^{(1)} + \chi_{\lambda}^{(1)} [\lambda^2 f_c^{(2)}] \chi_{\lambda}^{(2)}$$
$$E_{xc}^{\lambda} = \lambda E_x - \frac{1}{2\pi} \int_0^{\lambda} d\mu \int_0^{\infty} du \operatorname{Tr} \left\{ v_c \left[ \chi_{\mu}^{(1)}(iu) - \chi_0(iu) \right] \right\} + \frac{1}{2\pi} \int_0^{\lambda} d\mu \int_0^{\infty} du \operatorname{Tr} \left\{ v_c \left[ \chi_{\mu}^{(2)}(iu) - \chi_{\mu}^{(1)}(iu) \right] \right\} + \frac{1}{2\pi} \int_0^{\lambda} d\mu \int_0^{\infty} du \operatorname{Tr} \left\{ v_c \left[ \chi_{\mu}(iu) - \chi_{\mu}^{(2)}(iu) \right] \right\} = \frac{\lambda E_x + E_{c,\lambda}^{(2)} + E_{c,\lambda}^{(3)} + \Delta^{(3)} E_{c,\lambda}}{\chi_{\lambda}^{(2)} \operatorname{Kernel} \propto \lambda^2} \implies E_{c,\lambda}^{(3)} \sim o(\lambda^3), \ \Delta E_{c,\lambda}^{(3)} \sim o(\lambda^4)$$

Route for a systematic improvement of  $E_{xc}$ 

$$E_{xc,\lambda}^{(1)}(=\lambda E_x) \longrightarrow f_{xc}^{(1)}(=f_x) \longrightarrow E_{c,\lambda}^{(2)} \longrightarrow f_c^{(2)} \longrightarrow E_{c,\lambda}^{(3)} \longrightarrow f_c^{(3)} \cdots$$

### Calculating the Trace

$$E_{c}^{(2)} = -\frac{1}{2\pi} \int_{0}^{1} d\lambda \int_{0}^{\infty} du \operatorname{Tr} \left\{ v_{c} \left[ \chi_{\lambda}^{(1)}(iu) - \chi_{0}(iu) \right] \right\}$$
$$\chi_{\lambda}^{(1)} = \chi_{0} + \chi_{\lambda}^{(1)} [\lambda v_{c} + \lambda f_{x}] \chi_{0}$$

consider the generalized eigenvalue problem

$$\begin{split} \chi_{0}[\upsilon_{c}+f_{x}]\chi_{0}|\omega_{\alpha}\rangle &= -a_{\alpha}[-\chi_{0}]|\omega_{\alpha}\rangle \qquad \langle\omega_{\alpha}|[-\chi_{0}]|\omega_{\beta}\rangle = \delta_{\alpha\beta}\\ \chi_{\lambda}^{(1)}|\omega_{\alpha}\rangle &= \frac{1}{1-\lambda a_{\alpha}}\chi_{0}|\omega_{\alpha}\rangle\\ \mathsf{Tr}[\upsilon_{c}(\chi_{\lambda}^{(1)}-\chi_{0})] &= \sum_{\alpha}\left(1-\frac{1}{1-\lambda a_{\alpha}}\right)\langle\omega_{\alpha}|\chi_{0}\upsilon_{c}\chi_{0}|\omega_{\alpha}\rangle \end{split}$$

Performing integration over  $\lambda$ 

$$E_{c}^{(2)} = -\frac{1}{2\pi} \int_{0}^{\infty} du \sum_{\alpha} \frac{\langle \omega_{\alpha} | \chi_{0} \upsilon_{c} \chi_{0} | \omega_{\alpha} \rangle}{a_{\alpha}(iu)} \left\{ \text{Log}[1 - a_{\alpha}(iu)] + a_{\alpha}(iu) \right\}$$

#### Perturbation Theory (PT) along the adiabatic path

Only  $h_{\upsilon x} = \chi_0(\upsilon_c + f_x)\chi_0$  is needed (and not  $f_x$ )

 $\chi_{\lambda}^{(1)} = \chi_{0} + \lambda \left\{ \chi_{0} [v_{c} + f_{x}] \chi_{0} \right\} + o(\lambda^{2}) = \chi_{0} + \lambda h_{vx} + o(\lambda^{2})$  $h_{vx} = \left[ \frac{d\chi_{\lambda}^{(1)}}{d\lambda} \right]_{\lambda=0}$  $H_{\lambda} = T + \lambda W + v_{ext}^{\lambda} = H_{0} + \lambda \left( W + \left[ \frac{dv_{ext}^{\lambda}}{d\lambda} \right]_{\lambda=0} \right) + o(\lambda^{2})$ 

with

$$H_{0} = T_{s} + v_{KS}(\mathbf{r}) + v_{p}(\mathbf{r}, t)$$
$$\left[\frac{dv_{ext}^{\lambda}}{d\lambda}\right]_{\lambda=0} = -v_{H} - v_{x}$$

## Perturbation Theory (PT) along the adiabatic path

$$H^{\lambda=0} = H_{KS} + v_p(\mathbf{r},t)$$
 with  $v_p(\mathbf{r},t) = \Delta V(\mathbf{r})e^{ut}$ 

From standard time dependent PT on the MB system

$$\Delta n(\mathbf{r}; iu) = \langle \Phi_0 | \hat{n}(\mathbf{r}) | \Delta \Phi_0^{(+)} + \Delta \Phi_0^{(-)} \rangle$$

$$[H_{KS} - (E_0 \pm iu)] |\Delta \Phi_0^{(\pm)}\rangle + \Delta V |\Phi_0\rangle = 0$$

The generic response function matrix element is

$$\chi^{\beta\alpha} = \langle \Delta^{\beta} V | \chi | \Delta^{\alpha} V \rangle = \int d\mathbf{r} d\mathbf{r}' \, \Delta^{\beta} V(\mathbf{r}) \chi(\mathbf{r}, \mathbf{r}'; iu) \Delta^{\alpha} V(\mathbf{r}')$$
$$= \int d\mathbf{r} \, \Delta^{\beta} V(\mathbf{r}) \Delta^{\alpha} n(\mathbf{r}; iu) = \langle \Phi_0 | \Delta^{\beta} V | \Delta^{\alpha} \Phi_0^{(+)} + \Delta^{\alpha} \Phi_0^{(-)} \rangle$$

#### Perturbation Theory (PT) along the adiabatic path

Switching on the AC perturbation:  $\delta V = W - v_H - v_x$ 

$$h_{\nu x}^{\beta \alpha} = \delta \chi^{\beta \alpha} = \langle \delta \Phi_0 | \Delta^{\beta} V | \Delta^{\alpha} \Phi_0^{(+)} + \Delta^{\alpha} \Phi_0^{(-)} \rangle + \langle \Phi_0 | \Delta^{\beta} V | \delta \Delta \Phi_0^{(+)} + \delta \Delta^{\alpha} \Phi_0^{(-)} \rangle$$
$$[H_{\kappa S} - (E_0 \pm iu)] | \delta \Delta^{\alpha} \Phi_0^{(\pm)} \rangle + [\delta V - \delta E_0] | \Delta^{\alpha} \Phi_0^{(\pm)} \rangle + \Delta^{\alpha} V | \delta \Phi_0 \rangle = 0$$

 $\delta \chi$  is the third derivative of the energy  $\Rightarrow$  must depend only on first order correction of the wf ("2n+1" Theorem)

$$\begin{split} h_{\upsilon x}^{\beta\alpha} &= \langle \Delta^{\beta} \Phi_{0}^{(+)} | \delta V | \Delta^{\alpha} \Phi_{0}^{(-)} \rangle + \langle \Delta^{\beta} \Phi_{0}^{(-)} | \delta V | \Delta^{\alpha} \Phi_{0}^{(+)} \rangle + \\ &- \left[ \langle \Delta^{\beta} \Phi_{0}^{(+)} | \Delta^{\alpha} \Phi_{0}^{(-)} \rangle + \langle \Delta^{\beta} \Phi_{0}^{(-)} | \Delta^{\alpha} \Phi_{0}^{(+)} \rangle \right] \langle \Phi_{0} | \delta V | \Phi_{0} \rangle + \\ &+ \langle \Delta^{\beta} \Phi_{0}^{(+)} + \Delta^{\beta} \Phi_{0}^{(-)} | \Delta^{\alpha} V | \delta \Phi_{0} \rangle + \langle \delta \Phi_{0} | \Delta^{\beta} V | \Delta^{\alpha} \Phi_{0}^{(+)} + \Delta^{\alpha} \Phi_{0}^{(-)} \rangle \end{split}$$

### Matrix element of $h_{vx}$

1

$$\begin{split} h_{\upsilon x}^{\alpha\beta} &= + \sum_{ab} \langle \phi_b \Delta^\beta \phi_a^{(-)} | W | \phi_a \Delta^\alpha \phi_b^{(+)} \rangle + \langle \phi_b \Delta^\beta \phi_a^{(+)} | W | \phi_a \Delta^\alpha \phi_b^{(-)} \rangle \\ &+ \sum_{ab} \langle \phi_b \Delta^\beta \phi_a^{(+)} | W | \phi_a \Delta^\alpha \phi_b^{(+)} \rangle + \langle \phi_b \Delta^\beta \phi_a^{(-)} | W | \phi_a \Delta^\alpha \phi_b^{(-)} \rangle \\ &- \sum_{ab} \langle \phi_b \Delta^\beta \phi_a^{(-)} | W | \Delta^\alpha \phi_b^{(+)} \phi_a \rangle + \langle \Delta^\beta \phi_b^{(+)} \phi_a | W | \phi_b \Delta^\alpha \phi_a^{(-)} \rangle \\ &- \sum_{ab} \langle \phi_b \phi_a | W | \Delta^\beta \phi_b^{(+)} \Delta^\alpha \phi_a^{(-)} \rangle + \langle \Delta^\beta \phi_b^{(+)} \Delta^\alpha \phi_a^{(-)} | W | \phi_b \phi_a \rangle \\ &+ \sum_{a} \langle \Delta^\beta \phi_a^{(-)} | V_x - \upsilon_x | \Delta^\alpha \phi_a^{(+)} \rangle - \sum_{ab} \langle \Delta^\beta \phi_a^{(-)} | \Delta^\alpha \phi_b^{(+)} \rangle \langle \phi_b | V_x - \upsilon_x | \phi_a \rangle \\ &+ \sum_{a} \langle \Delta^\beta \phi_a^{(+)} | V_x - \upsilon_x | \Delta^\alpha \phi_a^{(-)} \rangle - \sum_{ab} \langle \Delta^\beta \phi_a^{(+)} | \Delta^\alpha \phi_b^{(-)} \rangle \langle \phi_b | V_x - \upsilon_x | \phi_a \rangle \\ &+ \sum_{a} \langle \delta \phi_a | \Delta^\beta V | \Delta^\alpha \phi_a^{(+)} \rangle + \sum_{a} \langle \delta \phi_a | \Delta^\beta V | \Delta^\alpha \phi_a^{(-)} \rangle \\ &- \sum_{ab} \langle \delta \phi_a | \Delta^\beta \phi_b^{(+)} \rangle \langle \phi_b | \Delta^\alpha V | \phi_a \rangle - \sum_{ab} \langle \Delta^\beta \phi_b^{(-)} | \delta \phi_a \rangle \langle \phi_a | \Delta^\alpha V | \phi_b \rangle \\ &- \sum_{ab} \langle \Delta^\beta \phi_b^{(+)} | \delta \phi_a \rangle \langle \phi_a | \Delta^\alpha V | \phi_b \rangle - \sum_{ab} \langle \Delta^\beta \phi_b^{(-)} | \delta \phi_a \rangle \langle \phi_a | \Delta^\alpha V | \phi_b \rangle \end{split}$$

Consistent with Goerling (Int. J. Quan. Chem. 68, 265)

$$E_{c}^{(2)} = -\frac{1}{2\pi} \int_{0}^{\infty} du \sum_{\alpha} \frac{\langle \Delta^{\alpha} V | \chi_{0} v_{c} \chi_{0} | \Delta^{\alpha} V \rangle}{a_{\alpha}(iu)} \{ \log[1 - a_{\alpha}(iu)] + a_{\alpha}(iu) \}$$

$$h_{vx} | \Delta^{\alpha} V \rangle = -a_{\alpha} [-\chi_{0}] | \Delta^{\alpha} V \rangle \qquad \langle \Delta^{\alpha} V | [-\chi_{0}] | \Delta^{\beta} V \rangle = \delta_{\alpha\beta}$$

$$\langle \delta \phi_{a} | \Delta^{\beta} V | \Delta^{\alpha} \phi_{a}^{(+)} \rangle \qquad \text{OK}$$

$$\langle \Delta^{\beta} \phi_{a}^{(-)} | V_{x} - v_{x} | \Delta^{\alpha} \phi_{a}^{(+)} \rangle \qquad \text{NO}$$
PUT  $\langle \Delta^{\beta} \phi_{a}^{(-)} |$  is such that

BUT  $\langle \Delta^{\beta} \phi_{a}^{(-)} |$  is such that

$$\langle \Delta^{\beta} \phi_{a}^{(-)} | [H_{0} - (\varepsilon_{a} + iu)] = -\langle \phi_{a} | \Delta^{\beta} V \Rightarrow$$
  
 
$$\Rightarrow \qquad \langle \Delta^{\beta} \phi_{a}^{(-)} | = \langle \phi_{a} | \Delta^{\beta} V G(\varepsilon_{a} + iu)$$

$$\langle \delta \phi_{a} | \Delta^{\beta} V | \Delta^{\alpha} \phi_{a}^{(+)} \rangle \qquad \mathsf{OK} \\ \langle \phi_{a} | \Delta^{\beta} V | G(\varepsilon_{a} + iu) [V_{x} - \upsilon_{x}] \Delta^{\alpha} \phi_{a}^{(+)} \rangle \qquad \mathsf{OK}$$

Computational cost  $\sim \chi_0 |\Delta^\beta V 
angle$ 

#### Testing on Homogeneous Electron Gas (HEG)

• Local Density like Approximation for  $\Delta^{(2)}E_c$  in the RPA+ spirit..



- RPA not very good, RPA+fx much better, however RPA+fx becomes pathological beyond  $r_s \approx 10 \dots$
- RPA, RPA+fx magnetic polarization dependence in very good agreement with QMC data [Ortiz & Ballone, PRB 50, 1391 (1994)]

## Conclusions

- ACFDT is a framework for a systematic generation of improved functionals in terms of coupling constant strenght.
- RPA is the simplest approximation, not pathological but not very accurate (in the HEG for instance)
- RPA+fx includes all linear coupling terms but becomes pathological at low densities
- self-consistent potential for RPA is possible (hence forces, relaxation, Molecular Dynamics... (in due time)) but does not bind *Be*<sub>2</sub> ...
- scf potential for RPA+fx or going beyond RPA+fx in the correlation energy expansion appears quite involved...