
HHH three point functions at strong coupling

In this exercise we will determine the leading strong coupling behavior of cer-
tain 3-point functions inN = 4 SYM by reproducing Figure 3 of 1109.6262. If
you are interested in details on the set-up of this computation see 1109.6262.
Hint: study in detail the notebook of Pedro’s first lecture on solving the
Liouville PDE before starting the second part of the Exercise.

1 Analytics (Very easy)

The (AdS contribution to the) regularized Area relevant for computing the
structure constant can actually be computed without knowing the precise
shape of the surface!, see 1109.6262. It is given by
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• Reproduce the right column of Figure 3 of 1109.6262

2 Numerics (Medium)

The PDE

The goal of this exercise is to use Mathematica to numerically solve the
nonlinear PDE
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with w = x + iy, w̄ = x − iy. These are the equations relevant for a three
point function with two operators of dimension ∆ and a third of dimension
∆∞. For concreteness set ∆ = ∆∞ = 1. You can change it later. The
boundary conditions to be imposed on the solution of the PDE are

γ → log
√
TT , (at zeros of T ) (4)

and

γ → 0, (at poles of T ) (5)

In particular, one of the poles of T is at infinity so that γ → 0 at infinity.

Numerics

• Code the left hand side of (2) in Mathematica.

• We define

γreg =
1

2
γ + Lreg, Lreg = −1

4
log

[
(w2 + a2) (w̄2 + a2)

w2w̄2 + a2

]
(6)

This new function is more convenient for numerics since it is regular at
the zeros of T (it’s actually regular everywhere on the Riemann sphere).
The price to pay is that the equation becomes much uglier. Find the
equation for γreg.

• Next we change variables
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−→
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(7)

which are quite useful because they live in a finite domain, s ∈ [0, 1],
t ∈ [0, 1] (note that in this exercise we are interested in the quadrant
x, y > 0). How does the equation look in these new coordinates?

Hint: It is useful to first play with a simpler toy model. For example,
under x = ey the differential equation f + xf ′ + x2f ′′ = 0 becomes a
simple Harmonic oscillator ODE. We could easily see this by using
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F[x]+x D[F[x],x]+x^2 D[F[x],{x,2}]==0/.

F->(f[Log[#]]&)/.x->Exp[y]//PowerExpand//Simplify

Understand this piece of code and then change equation (2) to (s, t)
coordinates.

• Now we discretize.

[
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Make this replacement in your PDE (in s and t variables, of course).

Do similar for ∂2
t γreg (s, t). For single derivatives use γ

(n−1)
reg only. Also

replace all γreg’s appearing elsewhere by γ
(n−1)
reg . Solve for γ

(n)
reg (s, t) in

terms of γ
(n−1)
reg , that is in terms of γreg at the previous iteration. Hint:

This is very similar to the lecture on the Liouville equation.

• The boundary conditions in the s and t variables read

γ (s, 0) = 0 (9)

γ (1, t) = 0 (10)

γ (s, 1) = 0 (11)

∂sγ (t, s) |s=0 = 0 (12)

What do they become for γreg? For Example, for the condition with
the derivative you should find

∂sγreg (t, s) |s=0 = 0 (13)

• Code the boundary conditions for γreg. Hint: again, see lecture on Li-
ouville. One way of implementing (13) is (γreg =g)

g[n_][0, t_] := g[n - 1][\[Epsilon], t]

Explain why.

• Code some reasonable γ(0)(s, t) to start the iterations.
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• Define some number of points in our lattice discretization, for example
Λ = 17 and ε = 1/Λ.

• Compute γreg((Λ + 1)/(2Λ), (Λ + 1)/(2Λ)) after 10 iterations.

At this point the difficulty level of the exercise changes. It
is now Hard

• Compute Compute γreg((Λ + 1)/(2Λ), (Λ + 1)/(2Λ)) for 100, 1000 and
even 2000 iterations. The last ones should take a few minutes! If you
use γreg = 0 for starting point you should find something like

{{10,0.0592509},{200,0.324321},{1000,0.377323},{2000,0.380725}}

• ListPlot the sequence of numbers above (or whatever you find). To
observe that the iterations are indeed converging.

• The regularized area is given by

Areareg =

∫
x,y>0

dwdw̄ 4
√
T T̄ (cosh γ − 1) (14)

Compute the integrand in terms of s, t and also γreg. Don’t forget the
Jacobian from the change of variables.

• Now we need to compute this integral. Compute it by replacing it by
a Riemann sum. As a function of the number of iterations you should
find something like

{{200, 0.2456}, {500, 0.368051}, {1000, 0.414301}, {2000, 0.432258}}

If you want to do slightly better define an Interpolation to create
a numerical function γreg and then use NIntegrate. Compare with the
third line in Figure 3 (page 31) of arXiv:1109.6262. In this way you
should be able to get at least 2 digits of accuracy.

• Compare with the analytic predictions for these particular values of
∆’s.

• Very hard: Compute the other values of ∆ in Figure 3 of arXiv:1109.6262.
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• Really very hard: Google for other relaxation methods. Try imple-
menting non-local ones and compare the performance and accuracy
compared with the local one used so far.
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