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Analytic toy model for conformal bootstrap

The conformal bootstrap equation for the correlator of four identical scalars φ of dimen-
sion [φ] = d reads:

F0,0(z, z̄) +
∑

p∆,lF∆,l(z, z̄) = 0, p∆,l > 0 (1)

where

F0,0(z, z̄) ≡ (1− z)d(1− z̄)d − zdz̄d (2)

F∆,l(z, z̄) ≡ (1− z)d(1− z̄)dG∆,l(z, z̄)− zdz̄dG∆,l(1− z, 1− z̄) (3)

The sum in (1) is over conformal blocks of conformal primaries of dimension ∆ and spin l.
Conformal blocks are complicated objects, but we know that they have an expansion of the
form:

G∆,l(z, z̄) =
∑

n=2,4,6...

∑
l′

bn,l′H∆+n,l′(z, z̄) (4)

where
H∆′,l′(z, z̄) = r∆′

Ql′(cosα), reiα = ρ(z) =
z

(1 +
√

1− z)2
(5)

are contributions of descendants. Here Ql(x) are the Gegenbauer polynomials C
(D/2−1)
l (x)

C
(a)
l (x)↔ GegenbauerC[l,a,x] (6)

For D = 2 we have a = 0 and the regularized Gegenbauer polynomial must be used. In
practice this means that in this case:

Ql(x) = cos(l arccosx) (7)

The coefficients bn,l′ in (4) are complicated functions of ∆,l and the spacetime dimension.
They are all positive (assuming that the theory is unitary so that the primaries satisfy the
unitarity bounds). Substituting (4) into (1) we get a simpler equation:

F0,0(z, z̄) +
∑

q∆,lH∆,l(z, z̄) = 0, q∆,l > 0 (8)

where the sum is now over all states, primaries or descendants. The coefficients are again
positive. It is important that only even spins are present in (8), as in (1).

Passing from Eq. (1) to Eq. (8) we discarded a part of the information available in
conformal theory (namely, that the coefficients of descendants are proportional to those of
primaries with fixed coefficients). But we got a simpler equation since all involved functions
are now elementary.
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Problem. For dimensions d very close to the unitarity bound D/2 − 1, 2 6 D 6 4,
show that Eq. (8) does not have a solution unless a scalar operator of dimension below a
certain bound ∆max(D) appears in the OPE φ × φ. [The bound also depends on d but for
simplicity consider the d→ (D/2− 1)+ limit.]

You will have to follow the following steps:

1. (Analytical with the help of Mathematica)

(a) Taylor-expand Eq. (8) to third order in z and z̄ around the point z = z̄ = 1/2.
Evaluate the three independent expansion coefficients as explicit functions of d,∆, l, D.
You can choose the derivatives ∂z, ∂

3
z , ∂

2
z∂z̄ as a basis. You will need to derive a formula for

the ratio

k =
[C

(a)
l ]′(x)

C
(a)
l (x)

∣∣∣∣∣
x=1

(9)

as a function of l and a. This can be derived from the generating function relation:

(1− 2xt+ t2)−a =
∞∑
l=0

C
(a)
l (x)tl (10)

The actual value of C
(a)
l (1) > 0 can also be computed but will not be needed since it (like

other positive factors) can be absorbed redefining q∆,l.

(b) Eliminate one of the three equations, bringing the remaining two into the homoge-
neous form. A convenient choice is to eliminate the ∂z equation. Taking linear combinations
of the remaining equations and rescaling the vectors bring the system to the form:∑

q∆,l
~h∆,l = (0, 0), q∆,l > 0,

∑
q∆,l > 0. (11)

[The last condition just expresses the fact that not all coefficients must be zero, eliminating
the trivial solution which does not satisfy the eliminated equation.] with

~h∆,l =

(
1 + a1(d)∆−1 + a2(d)∆−2

∆−1 + b1(d, k)∆−2 + b2(d, k)∆−3

)
(12)

where the coefficients ai and bi can be found explicitly. Notice that the dependence on spin
and D will enter only through k.

3. (Numerical with the help of Mathematica) For D = 2, 3, 4, explore how the vectors
~h∆,l move in the plane while you vary ∆, l respecting the D-dimensional unitarity bounds:

∆ > l +D − 2 (l > 1), ∆ > D/2− 1 (l = 0) (13)

Recall that only even spins need to be examined. In particular examine how the slope of the
vectors varies. Study the convex hull (i.e. a set of all linear combinations with nonnegative
coefficients) of the subset of vectors

{~h∆,` : ∆ > ∆∗(l = 0), l +D − 2(l = 2, 4, 6 . . .)} (14)

2



as a function of ∆∗. You will find that for small ∆∗ the convex hull is R2, while for large ∆∗
the convex hull will be a sector of R2 of angle < π. In the first case Eq. (11) has solutions,
while in the second one it does not. The bound ∆max that we are computing is the boundary
between the two cases.

4. (Partly numerical, partly analytical) Convince yourself that the actual value of ∆max

can be determined by looking only at ~h∆,0 (as a function of ∆) and the stress tensor vector
~hD,2. This is because it so happens that the rest of the vectors lie in the convex hull of this
smaller set.

Then find the actual bound ∆max(D), as a solution of a quadratic equation with D-
dependent coefficients. Plot the bound. You should see it interpolating smoothly between
≈ 0.7 for D = 2 and ≈ 3.6 for D = 4.
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