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Slava Rychkov
Conformal bootstrap in 4− ε dimensions

In D = 4 − ε dimensions, perturbing the free scalar theory by λφ4 (and finetuning
the mass term), one can flow in the IR to a nontrivial CFT known as the Wilson-Fisher
fixed point. All parameters of this CFT (dimensions, OPE coefficients) have power series
expansions in ε around their free theory values. Although these series are only asymptotic,
one can still try to resum them and continue to the physically relevant value ε = 1
(corresponding to the critical point of the 3D Ising model). A lot of effort has been invested
in computing these ε-expansion series.

Important unsolved problem: Can conformal symmetry be used to generate the
ε-expansion series? [The existing techniques use normal Feynman diagram perturbation
theory and do not take advantage of the conformal symmetry.]

Here we will do several modest exercises related to this problem.

1. Free theory spectrum. The free scalar theory consists of local operators built out
of φ and its derivatives (modulo the relation = 0. From the CFT point of view, some of
these operators are primaries (e.g φ and all its integer powers), while others are descendants
(e.g. φ∂µφ = 1

2
∂µ(φ2)). Write a program which enumerates all primaries made out of k φ’s

involving 6 lmax non-contracted derivatives (i.e. with spin equal the number of derivatives).
Work in D = 4.

Hint. A general such operator will be a linear combination of terms of the schematic
form

∂n1φ ∂n2φ . . . ∂nkφ (1)

where derivatives, which are by assumption non-contracted, must be symmetrized, and also
traces must be subtracted to get a state of well-defined spin l =

∑
ni. In order to avoid

these complications, let us look at the all-z component of such fields, i.e. when all derivatives
are ∂z, where z = x1 + ix2 is the complex coordinate in an arbitrarily chosen plane. Then
there are also no traces to subtract.

Proceed recursively in l. For l = 0 we have one primary φk. Suppose we already
found all primaries with l − 1 derivatives, N of them, and we want to see the new pri-
maries which appear at order l. First we write down all candidates of the form (1) (use
IntegerPartitions). Suppose there are M of them. Surely M > N because we can obtain
at least N states by acting with derivatives on already found primaries. We thus expect
that M − N linear combinations will be new primaries. These linear combinations can be
found by imposing that their two-point functions with all previously found primaries be
zero. (Compute the matrix of two-point functions and use NullSpace). The two point
functions are evaluated using Wick’s theorem. To simplify the problem further assume that
the operators are inserted at two points x1, x2 with only zi nonzero, while the orthogonal
components x⊥i = 0 so that (x1 − x2)2 = (z1 − z2)(z̄1 − z̄2).
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2. First-order correction. Each free theory operator of the form (1) will map to an
operator at the Wilson-Fisher fixed point (although some operators which were primaries in
the free theory will flow to operators which are descendants; more about it below). There
is a simple way to compute the order-ε shift of the operator dimensions at the WF fixed
point in terms of its dimension in the free scalar theory:1

[O]WF = [O]free + 2
a(O)

a(φ4)
ε+O(ε2) (2)

where a(O) is the free theory OPE coefficients with which O appears in the OPE with the
perturbing operator φ4:

φ4 ×O =
a(O)

|x|4
O + . . . (3)

Notice that the dimension [O]free has to be computed taking into account that [φ]free =
1− ε/2 in D = 4− ε dimension, while within the accuracy of the formula (2) the coefficients
a(O) may be evaluated in D = 4.

For operators O of spin l > 0 the coefficient a(O) has to be defined a bit more carefully.
In this case rotation invariance allows terms in the OPE with the same 1/|x|4 leading
singularity but with extra angular dependence:

φ4(x)×Ozzz...(0) =

∑l
i=0 ai(O)(zz̄/x2)i

|x|4
Ozzz...(0) + . . . (4)

Then a(O) must be defined averaging every term in the RHS on S3. This gives:

a(O) =
l∑

i=0

ai(O)

i+ 1
(5)

Write a program which computes a(O) for any operator of the form (1). Hint. Work in
the normalization 〈φ(x)φ(0)〉 = 1/|x|2 with same all−z components as in Part 1, although
now you have to take x general to keep track of the angular dependence. Start by doing
two Wick contractions in φ4(x) × O(0), picking out two φ’s out of φ4 and two out of O
in all possible ways. Contracting with φ’s carrying derivatives, those derivatives will be
lost acting on the propagator. The φ2(x) now has to be expanded around 0 to pick up the
operator with the same number of derivatives as O.

3. Multiplet recombination.2

(a) The field φ is interacting at the WF fixed point. Thus in WF we have ∂2φWF 6= 0
while in the free theory ∂2φfree = 0. The state ∂2φWF must originate from some free theory
operator. The claim is that it originates from φ3. In other words, φ3 is a primary in free
theory but becomes a descendant of φ in WF:

∂2φWF ∝ (φ3)WF (6)

1This formula is an easy consequence of conformal perturbation theory. See Ch.5 of Cardy’s book
“Scaling and renormalization is statistical physics” for the derivation.

2Leonardo Rastelli, Balt van Rees, personal communication.
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One can say that the conformal multiplets of φfree and (φ3)free recombine to form the
conformal multiplet of φWF . Recombination is necessary since the multiplet of φfree satisfies
a shortening condition ∂2φfree = 0 and contains fewer states than that of φWF , while the
states cannot just appear or disappear.

Eq. (6) predicts that the dimensions of (φ3)WF and φWF differ by exactly 2. Let us check
this to O(ε). In fact [φ] does not get correction at order-ε. (As we will see below, it does get
a correction at O(ε2)). Using the code in Part 2, compute the correction to [φ3] and check
the prediction.

(b) The operator φ2 gets order-ε correction. However, primary operators with non-
contracted derivatives built out of two φ’s don’t. Compute the first few of these operators
using the code of Part 1 and check that O(ε) corrections are zero using the code of Part 2.

(c) The spin ` = 2, 4, 6, . . . operators considered in (b) in free theory are conserved spin
l tensors satisfying the shortening condition ∂ · J (l) = 0. Do they remain conserved at the
WF fixed point? Similarly to the analysis in (a), conservation condition can be violated
only if the multiplet of spin l, dimension l+ 2 current recombines with a multiplet of a spin
l− 1, dimension l+ 3 primary operator. By inspection, show that there is no candidate for
l = 2 and thus the stress tensor remains conserved to all orders in ε. Use the Part 2 code
to show that for l = 4, 6 there are candidates.

(d) In fact for l = 4 and higher the recombination must occur, since a Coleman-Mandula-
like theorem (1112.1016) forbids higher-spin conserved currents for CFT in dimension D 6=
2. This implies that

∂ · [J (l)]WF ∝ [J̃ (l−1)]WF , l > 4, (7)

where J̃ is a candidate identified in (c). Since by (b) the O(ε) correction for J (l) vanishes,
we get a prediction for the dimension of J̃ (l−1). Check this prediction using the Part 2 code
for l = 4.

4. Second-order correction to the dimension of φ.

We know that

[φ]WF = [φ]free + Aε2 + . . . . [φ2]WF = [φ2]free + ε/3 +Bε2 + . . . , (8)

where O(ε) corrections are computed by the method described in Part 2. Computation of
A and B is more complicated - with usual field theory techniques it requires a two-loop
calculation. Here we will see how conformal symmetry can be used to determine A.

Let’s denote φWF = O1, (φ2)WF = O2. Consider the four point function

〈O1(x1)O2(x2)O2(x3)O1(x4)〉 =

(
x2

24

x2
14

) 1
2

∆12
(
x2

14

x2
13

)− 1
2

∆12 g(u, v)

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆1+∆2)
, (9)

fixed by conformal symmetry to have this form (∆12 ≡ ∆1 − ∆2). The functions of the
cross ratios has an expansion into conformal blocks of the operators appearing in the OPE
O1 ×O2:

g(u, v) =
∑

(C∆,l)
2G∆12;∆,l(u.v) (10)
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As indicated, they blocks will also depend on ∆12, see below.

Now consider the OPEs. In free theory we have (check this!)

φ× (φ2)norm =
1√
2
φ+

√
3

2
(φ3)norm + . . . (11)

where the subscript norm means that the field has been normalized so that its two-point
function is 1/|x|2∆:

(φ2)norm ≡
1√
2
φ2, (φ3)norm ≡

1√
6
φ3 (12)

Couplings between the states have to vary continuously with ε, so that we expect that at
the WF fixed point:

O1 ×O2 = (
1√
2

+O(ε))O1 + . . . (13)

As we discussed in Part 3(a), at the WF fixed point the φ3 is not a primary but a descendant
of O1. So its coupling in the OPE O1×O2 will be fixed by conformal symmetry. To extract
this coupling consider the known expression for the scalar conformal block in D dimensions
(hep-th/0011040)

G∆12;∆,l=0(u, v) = u∆/2

∞∑
m,n=0

[(
∆+∆12

2

)
m

(
∆−∆12

2

)
m+n

]2

m!n!(∆ + 1− D
2

)m(∆)2m+n

um(1− v)n, (14)

where (x)n is the Pochhammer symbol. Notice that for generic ∆12 this conformal block has
a singularity at ∆ = ∆free, which is not a problem since the free scalar must be decoupled
from the rest of the theory, hence have zero OPE coefficient. If however ∆12 = −∆free then
the limit ∆→ ∆free is finite and defines the free scalar conformal block in the OPE φ×φ2.

Now let us substitute the WF dimensions into this expression. It turns out that:

lim
ε→0

GD=4−ε
∆12;∆1,0

(u, v) = GD=1
−1;1,0 + const.GD=1

−1;3,0 (15)

This expression means that, as expected, in the limit D → 4 the conformal block of O1

splits into the sum of conformal blocks of φ and φ3. Write a program to check this and find
the const., which turns out to depend on A but not on B. Since the relative couplings of
φ and φ3 are expected to vary continuously, we expect const. = 3/2 from (11). Use this to
show that A = 1/108.
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