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odynamics before Maxwell
ell’s correction to Ampere’s law
aral form of Maxwell’s equations
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and Momentum of Electromagnetic
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E = Electric field

D = Electric displacement
B = Magnetic flux density
H = Auxiliary field

p= Charge density

j = Current density

L, (permeability of free space) = 4nx10-"T-m/A

go (permittivity of free space) = 8.854x10-12N-m?/ C?
c (speed of light) = 2.99792458x108 m/s




Introduction

ectrostatic field : Stationary charges p
ectric fields that are constant in time
oory of static charges is called electrost:

ynary charges mm)p Constant Electric fi




trostatic :Revis
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lectric

E(P) Is force per unit
ed on a test charge




actric Fiel
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/A is the line charge density

E(P) =

o is the surface charg




The Electric Field: cont’d
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£ Is the volume charge density
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one in moving a test charge Q in a
P, to P, with a constant speed.

W = Force e dis tan ce

tive sign - work done is against the field.
y distribution of fixed charges.

§E.dfzo

o|lectrostatic field is conservative




c Potentia

okes’s Theorem gives
VxE=0
E=-VV

where Vis Scalar Potential

ork done in moving a charge Q from infinity to
ere potential is V

W =QV

V = Work per unit charge

= Volts = joules/Coulomb




tial due to a single point charge g at ©

V:]" gdr @
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al form of Gauss’s
Law

son’s Equation

2's Equation




atic Fields

ds, liquids, gases, metal, wood a
erently in electric field.

arge Classes of Matter

onductors
dielectric

nductors: Unlimited supply of free charges.

|ectrics:

arges are attached to specific atoms or mol
free charges.

possible motion - minute displacement ¢
egative charges in opposite direction.

2|ds- p




olarizatic

with charge displacements or iInc
s said to be polarized.

Dipole Moment P = 4=

of proportionality a is called the atomic pola

e moment per unit volume




dipole p is

Fep
2
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Bound charges at suri

Bound charges in volu

j i—abda +

sl rface

is field due to bound charges plus due tc




larization is to produce accumulat

charge density

Ps T Py j[_j’dé::Qfe

J
auss’s law Q e

—

B 2+ P

-Free charges e

Displacement vecto
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tostatics : Re

ostatics

eady current produce magnetic fields
ynstant in time. The theory of constant
called magnetostatics.

dy currents mm)p Constant Magnetic




agnetic Forces

F =q|E+(vxB)

otic force on a segment of current carrying wire i




tion of Con

crossing a surface s can be written as

I_J'Joda j(v J)dz

(Ve J)df___jpdf__j .

onserved whatever flows out must come at the e
Ing inside - outward flow decreases the charge le

R
ot

This is called equation of co
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must be the same along the line- othe
pilling up some where and current ca
2d indefinitely.

% _g

ot

etostatic and equation of continuity
Vel =0

increasing - never decreasing.




@ [ L

Distributions

Savart Law

I is an element of length.

vector from source to point p.

Permeability of free space.

B = N/Am = Tesla (T)







2tween two pare

c field at (2) due to current

'Llo Il Points inside

27

netic force law

(1)

= IR
|| dl, x k
‘A % 2xd
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veen two p

dF = #olilz g,
27d

al force is infinite but force per unit length is

dF _,Uolllz

dl, 2

S are anti-parallel the force is repulsive.




3 around a circular path The current is out of the page

,




for the general case of a volume cL

_Ho pI()xF
_470zI s

I
B is a function of (x, v, 2),

J is a function of (x', y', 2'),
F=G6—-xx+0-y)§i+@-2)i
dv’ = dx'dy' dz’.




VxB=u,l Ampere’s law
form of Ampere’s law

g Stokes’ theorem

6x|§)od§=¢l§0dr:yo_f50d§

Cf B edl = Holane
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actor Poten

fferential law of Magnetostatics




ostatic Fielc

2|lds- due to electrical charges in motio
a magnet on atomic scale we would find tiny
sons for atomic currents.
ons orbiting around nuclei.
rons spinning on their axes.

loops form magnetic dipoles - they cancel ez
andom orientation of the atoms.

applied Magnetic field- a net alignment of
urs- and medium becomes magnetically




agnetizatio

2 average magnetic dipole moment pe
is the number of atoms per unit vo
tization is define as

- Nm




gnetic Mate

agnetic Materials

aterials having magnetization parallel to B
amaghnets.

amagnetic Materials

elementary moment are not permanent b
uced according to Faraday’s law of induction. In
terials magnetization is opposite to B.

omagnetic Materials

arge magnetization due to electron spin. E
5 are aligned in form of groups called do




d of Magneti

vector potential
loop

Ly MXT
2

A7 r

VxM
e

da + 220
A

dr

Bound Surface Current

Bound Volume Curren







day’s Law of Inc

s Law - a changing - magnetic flux throt
induces an electromotive force around the

€ — Induced emf

E — Induced electric field intensity

differential form of Faraday’s law




V — Scalar potenti

emf in a system moving in a changing magnetic

e=TxE=-28 T x(UxB)
ot
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Maxwell’s Equations




ction to Ma
Equation

odynamics Maxwell’s equations are a set ©
s, that describes the behavior of both the ele
gnetic fields as well as their interaction with matt

3lI’s four equations express

electric charges produce electric field (Gauss’s la
2 absence of magnetic monopoles

v currents and changing electric fields produc
netic fields (Ampere’s law)

changing magnetic fields produces electric
ay’s law of induction)
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/namics Before

e

(i)VeE

P
80
0

(ii)VeB

s Law  (iii)VxE=——=
ot

(iV)VxB = p,J




ics Before Ma>

ot
hand side iIs zero, because divergence of a curl
t hand side is zero because V e B = 0.

jence to (iv)

G0 (¥ xB) = s, (V)
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namics Befo
(Cont’d)

and side is zero, because divergence of &
t hand side is zero for steady currents i.e.,

Vel=0

trodynamics from conservation of charge

1stant at any point in space which i




orrection to Ampg




orrection to A

res law with Maxwell’s correction




orm of Maxwell’

Integral Form




Equations il

m is a linear,
eous, Isotropic
)ersion less medium

ere is no current or
charge is present in
vacuum, hence
|I’s equations reads

equations have a

solution in terms

g sinusoidal waves,

ne electric and
fields direction
to each other
2 direction of




quations Inside

s equations are modified for
agnetized materials. For linear mate
zation P and magnetization M is given

_ _—

M=y H
he D and B fields are related to E and H by

D=¢g,E+P=(1+y,)sE=¢E

—_

B=u (ﬁ+ﬁ)=(1+;(m),uoﬁ =,uﬁ
Where y, Is the electric susceptibility of materia
IS the magnetic susceptibility of material.
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quations

zed materials we have bound charges in




quations In
(Cont’d)

odynamics any change in the electric pola
s a flow of bound charges resulting in polari

tJp

6|3’ Polarization current density is due
to linear motion of charge when t

E Electric polarization changes

Total charge density

Pt = Pt T Py

Total current  density
=J;+J, +J,
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quations
(Cont’d)

Jersive, isotropic media € and y are time-i
d Maxwell’s equations reduces to




quations Ins
(Cont’d)

m (homogeneous) medium € and p are i
, hence Maxwell’s equations reads as

Generally, €
be rank-2 te
matrices)
bi-refringen
anisotropic
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

Li:'f-,fz':(;-,r)df'=gl [ oE, (F,:)df'=l [[(P5 (7o) + P (1))

= E(7,1)rdd=— Qm (f)=— (QL"‘“"" (6)+ Oz (1))

 D(7,1)dd = Ol (1) tj> (7,t)edd = —Q'= (1)
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

D(F,t)=g,E(7,t)+P(7,1)

Prownd (Tr1)=—VP(F.1)| |G g (Fo£) =P(7,t)e

inif

[ V-B(7,t)dr’ = ¢ _B(F.t)dd=0

B . = oB(7.t) . dre e
ISVXE(r,t)ida =¢C’E(r,t).df=__[g gt ):da =—E[ISB(F,I)‘de|
anclosed
emf £(t)= (ﬁeﬁ'(i-', t)ed £ = _%[LE (F,r)-da] 4 d¢Hdt (¢)
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

[ VxB(F.1)dd = B(7,1)dl=ph[ (Tpr (Fs)+ T, (7>1))edd

5

j cﬁcﬁ(i",t)'d? . (I._;‘.';f (t)_l_lgla (t)) = i, [Iﬁ (t)+I£l (t)+1'zi (1)+ I3 (I)]

J(7,1)=—B(7,1)-M(7,7)
Ho

gz (F.t)=VxM(7,1) i ¢ I)=aﬁ(i~',r)
Ky (7,2) =M (7, 1) x T\

intf
promd (7,1) = VM (F,1)| |o2™™ (F,t) =M (F,t )
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

[[VxB(F,t)pdi=§_H(F,1)dE=Igcm (r)+fs%=fﬂ” (r)+%[_fsﬁ(i',r)-dﬁ]

- senclasad 1 enclased 1 enclosed 1 1
Sf’s Beda=—0r;  =— Qe +— Qooma = _‘f)s O reeld +— (ﬁs T oonna 4
gﬂ Eﬂ 0 gﬂ Eﬂ
1 1
1 1
E, -E =—0,= _(aﬁm + o.baumf)
above belew &y &y
28-Jan-13 Preparatory School to the Winter 55

College on optics



at Interfaces




Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

M. 7= _ myenclosed 1 1
¢ Dedid = Qra =§ 0pda = |Dy -D =0,

fﬁsﬁ'd5=m=—ﬁﬁfmdﬂﬁ B -B =0iu

E=-VV

G A __ 1 =_L(a ol
an aﬂ . Eu ToT Eu Jrae bouned
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

D=¢E=-—VV
[E a];;abpm Ela];;ibdw] k.
2 _ = T fee
on on )|

L VeBdr = q‘SS Bedd =0

B™™.G—B"*"i=0 = |B] -B' =0|or: |Bf =B
above below above below

I;r{i]ﬁ_m Then:  B=p,(H+H)
4,

 Bedi=p® (H+Mpddi=0  or: Hedd =— Meda
LY h S 8§
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Equations and E
Jitions at Interfaces in

petween two different media, taking a closed
g slightly into the material on either side of |
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at Interface




Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

E;““-E-Ef’““@h%  Bedai =0

El -E' =0| (atinterface) or: |E! =E' | (atinterface)

above below above below
Since: D=gE+P And: &‘aﬁ=5—f’
Thus: (B - Fpom ) = Do f — Dpoes7) - (P0G — B F) = 0

In limit area of contour loop — 0 magnetic flux enclosed — 0 -——j

:(52 —fj}':m)=(f’l —f’: J{atinterﬁme)

above above below
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Equations and E
Jitions at Interfaces in

Ampere’s Law: tj)cﬁ-df’ = pt, (I + 15

E:m ._‘é _E_Tl ._'é = #ﬂfg + FaI;m!

OF

o = L}D-da =g L ——dd

Iy = I + Ty + 127
A L . ¢+ OP .
Iphi =LJPM -da=Is = «da

Igay = Joedd = [ VxMedd
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

Where ™ ° TOTAL current (free + bound + polarization) passing
T through enclosing Amperian loop contour C

No volume current density jm,j ﬁw’j ndlp orJ » contributes to Ifg;. in the limit area of

gontour loop — 0, however a surface current E’m,i’f W,IE il — Mx# can contribute!

Inthe limit that the enclosing Amperian loop contour C shrinks to zero
neight above/below interface- the enclosed area of loop contour —0;

oF dre = d®
e = ——r __‘= E — odr | = E
Then: I =5, Py da=g, dtl:-[ﬂE da:l g = —0

(D, = ‘L E«dd = enclosed flux of electric field lines)
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

P . dre= ,.7 d®
= Ear-da=E[LP-da]= -

(D, = I Pedd = enclosed flux of electric polarization field lines)
[

— 0

7 (ﬁx_é)
e =§m (nxl';)=( _'mr xﬂ) f = Using: 4 (ﬁx ff’)=§-(5xﬁ)
=K, (ﬁx?)=(qﬁwxﬁ)£’ - =5(3x§)
= qmﬁ-(ﬁxg)= (E;';w xn) ] {= (}ixﬁ)-é}
e’
et o Ko =K + Ky
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

f=—5-M and: —B=H+M then
M, Mo
ﬂi(ﬁzm = Bor ) = (EE3o o~ F 2o o) (W o~ N0 ) = [ (B e ) R %8
(at interface)
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quations anc
ions at Interfaces in

) see that: (at interface

and: B (at interface)

ponents of B are discontinuous at interface by Koy XA

—

onents of H are discontinuous at interface by K, _x#

ents of M are discontinuous at interface by I_‘-; nd N H
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Equations and E
Jitions at Interfaces in
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Maxwell’s Equations and Boundary
Conditions at Interfaces in Matter

- H | = K e X 1| (at interface) is equivalent to:

_ above belaw _
3 D 7 3
| 1 o4 Z | at; )
= =5 at interface
J7A On  |mtertace | £4 On  |interface =
y above ) \ below )
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Potential Formulation of
Electrodynamics 1

* In electrostatic Putting this in Faraday’s Law

IE = L .
V E O VXE:—g(VxA)
e E=—VV at
In electrodynamics V x ( + 2 Aj =1
< E = O -
But — E+E :—VV
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ectrodynamics

VEB=V. (%A) 0

Explain Maxwell’s ii and iii
equations
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s Law

Gauss




lectrodynamics £

OW consider
y y OE
V X B = J + S—
ILlO ILlO 0] at

Putting values of E and B we get

oV

—

Vx(?x A) =,uoj—,uogoﬁ(aj—



lectrodynamics

g vector identity
(VxA)=V(V-A)-V2A

n—ﬁ(ﬁm a (_

These equation carry all information Iin
Maxwell’'s equations
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o Transformat

of potentials, (V, A) and (V',A’)- co
ctric and Magnetic fields.

=A+a and V'=V+(- as A's give same B

of a=0, which implies a= grad. of A. As t
tials also give same E, then from

0

E=-VV' - —A
ot

—W-%ﬁ—%A—ga




Putting value of o we get
0
\% =—A1 =0
)
The term in paratheses is independent of position
0

= pf=——A1
p ot

Using this we get
A'l=A+VA

ges in V and A are called Gauge Trar

eparatory School to the




0’'s and Lorentz C

this we get V2 = -2
€9

oisson’s equation, setting V=0, we get

1 (p
o

tential is easy to calculate in Coulomb’s
ector potential is difficult to calcule
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>oulomb’s Gauc

lal equations for V and A in Coulombs




orentz Gauge
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e Electromagnetic Wave




agnetic Wave [

electromagnetic wave equation
ond-order partial differential equatio
cribes the propagation of electromac
es through a medium or in a vacuum

dbtain the electromagnetic wave eq
vacuum we begin with the n
side’' form of Maxwell's equatio




xwell's equation in
» space — no
ge or no current
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T xVxE =¥ x[- 2]
ot

order of differentiation on the R.H.S




axwell’s Equatic
ectromagnetic Wave

2
0°E
xE]l=—1 & e
, and g, are constant in time
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ell’s Equatic
actromagnetic Wave
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well’s Equatic
actromagnetic Wave

e wave equation for magnetic field

= 0°B
2
V°B—u,&, v =0

_
J o,
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tions to the wave equations, when there is no
esent can be plane waves - obtained by m
of variables
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of Electromagne

ectromagnetic waves can be expressed as

2 polarization vector and. k iS a prop:
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agnetic Ple

e - a constant-frequency w
onts (surfaces of constant p
parallel planes of constant a
l to the direction of propagation
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)ctromagnetic Plane

ectric and magnetic fields in the form of a
c plane wave with propagation vector k™ and
ion n”

(F,t) = E, cos(k - —wt)A

,t)=lE cos(k - r — wt)
C 0]
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geneous form of the equation - written |
electric field E or the magnetic field B -

Vacuum Matter

-
-2 = v
ot
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s Wave Equa
Matter 1

ivity: e=¢ € (g, is dielectric constant)
eability: py=p M, (M, is relative permeability =1
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gy and Momen
lectromagnetic Wave

per unit volume stored in electromagnetic f

U :%EEOEZ +i82]

Ho

case of monochromatic plane wave

1
—2E2 = ,LlogoEz
E?=¢_E, °cos’(
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gy and Momentt
ectromagnetic Waves

/e propagates, it carries this energy along
ux density (energy per unit area per

L (Ex)

s

onochromatic plane waves

ce,E,” cos® (kx—t)1 =

Preparatory School to the Winter
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of Electromagne

of electromagnetic waves is very comp
(light) part of EM waves.

ally, the orientation of a polarized electromag
n defined in the optical regime by the orientati
field vector.

light is generally un-polarized- all planes of pra
ually probable.

ransverse electromagnetic wave.




ear Polarizatic

ctrodynamics, linear polarize
polarization of electrome
ation is a confinement of the electri
or to a given plane along the direct

lane containing the electric field is
the plane of polarization.




Electromagnetic 1 Electric Field

Wave -~ B Magnetic Field

ertical Polarization Horizontal Polarization




ular Polariza

zation in which the tip of the electric fie
xed point in space - describes a circle
3SSES.

lectric vector - at one point in time - desc
along the direction of wave propagation.

agnitude of the electric field vector is cons
es.

polarization is a limiting case of
ondition of elliptical polarization.
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sular Polarize




otical Polariza

al polarization - is the polariz
omagnetic radiation such that the tif
ICc field vector describes an ellipse
| plane intersecting - and normal to
tion of propagation.
elliptically polarized wave may be re
two linearly polarized waves In

ure- with their polarization planes
) each other.




cal Polarize
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