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Nomenclature
• E = Electric field
• D = Electric displacement
• B = Magnetic flux density
• H = Auxiliary field
• = Charge density
• j = Current density
• 0 (permeability of free space) = 410-7T-m/A 
• 0 (permittivity of free space) = 8.85410-12N-m2/ C2

• c (speed of light) = 2.99792458108 m/s
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Introduction

• Electrostatics

 Electrostatic field : Stationary charges produce
electric fields that are constant in time. The
theory of static charges is called electrostatics.

Stationary charges          Constant Electric field;
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Electrostatic :Revisited

Coulombs Law
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The Electric Field
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Physically E(P) Is force per unit 
charge exerted on a test charge 
placed at P.
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The Electric Field: cont’d
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The Electric Field: cont’d
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Electric Potential

cedisForceW tan

 
2

1

P

p

ldEQW


The work done in moving a test charge Q in an electric field
from point P1 to P2 with a constant speed.

negative sign - work done is against the field.
For any distribution of fixed charges.

  0ldE


The electrostatic field is conservative
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Electric Potential: cont’d
Stokes’s Theorem gives

0 E


VE 


where V is Scalar Potential

The work done in moving a charge Q from infinity to a point
P2 where potential is V

VW Q
V = Work per unit charge

= Volts = joules/Coulomb
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Electric Potential : cont’d
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Gauss’s Law encQadE
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Differential form of Gauss’s 
Law 0
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 E


Poisson’s Equation

0

2




 V

Laplace's Equation 02  V



28-Jan-13 Preparatory School to the Winter 
College on optics

13

Electrostatic Fields in Matter
Matter: Solids, liquids, gases, metal, wood and glasses -
behave differently in electric field.

Two Large Classes of Matter
(i) Conductors
(ii) Dielectric

Conductors: Unlimited supply of free charges.
Dielectrics:
• Charges are attached to specific atoms or molecules-

No free charges.
• Only possible motion - minute displacement of positive

and negative charges in opposite direction.
• Large fields- pull the atom apart completely (ionizing it).
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Polarization
A dielectric with charge displacements or induced dipole
moment is said to be polarized.

+ + +

E=0

+ + +

+ E

EpInduced Dipole Moment

The constant of proportionality α is called the atomic polarizability

P ≡ dipole moment per unit volume
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The Field of a Polarized Object
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ˆb P n  


Bound charges at surface

b P  
 

Bound charges in volume

0

1 1 1
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s u r f a c e v o lu m e

V d a d
r r
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  
 

The total field is field due to bound charges plus due to free charges

The Field of a Polarized Object: cont’d
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Gauss’s law in Dielectric

• Effect of polarization is to produce accumulations of bound
charges.

• The total charge density

bf  

From Gauss’s law

0 b fE      
 

 


fD PED


 0

Displacement vector

fencD da Q 
 

fencQ -Free charges enclosed 
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Magnetostatics : Revisited
• Magnetostatics

 Steady current produce magnetic fields that are
constant in time. The theory of constant current
is called magnetostatics.

Steady currents Constant Magnetic field;
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Magnetic Forces

Lorentz Force

  BvEqF




• The magnetic force on a segment of current carrying wire is

   dlBIFmag



   BldIFmag


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Equation of Continuity

The current crossing a surface s can be written as

 
s v

I J da J d    
  

Charge is conserved whatever flows out must come at the expense of
that remaining inside - outward flow decreases the charge left in v

 
v

dJ d d d
dt t

             
 

J
t


  


 
This is called equation of continuity
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Equation of Continuity 1

In Magnetostatic steady currents flow in the wire and its
magnitude I must be the same along the line- otherwise charge
would be pilling up some where and current can not be
maintained indefinitely.

0



t


In Magnetostatic and equation of continuity

0J 
 

Steady Currents: The flow of charges that has been going on
forever - never increasing - never decreasing.
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Magnetostatic and Current 
Distributions

Biot and Savart Law
I

ld


r

p

Bd


  


 dl
r

rIpB 3
0

4 





dl is an element of length.

r vector from source to point p.

0 Permeability of free space.

Unit of B = N/Am = Tesla (T)
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Biot and Savart Law for Surface 
and Volume Currents
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Force between two parallel wires
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2
210

2
dl

d
IIdF






The total force is infinite but force per unit length is

d
II

dl
dF


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2

210

2



If currents are anti-parallel the force is repulsive.

Force between two parallel wires
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Straight line currents
The current is out of the pageThe integral of B around a circular path

of radius s, centered at the wire is

0
02

IB dl dl I
s

 


   


 
For bundle of straight wires. Wire that
passes through loop contributes only.

0 encB dl I 



Applying Stokes’ theorem

JB


0
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Divergence and Curl of B
Biot-Savart law for the general case of a volume current reads

 
 

 

 d

r
rrJB 3

0

4

 r

r

0B 
 

and JB


0
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Ampere’s Law

JB


0 Ampere’s law

Integral form of Ampere’s law

Using Stokes’ theorem

  0B da B dl J da       
    

0 encB dl I 



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Vector Potential
The basic differential law of Magnetostatics

0B 
 

JB


0

B is curl of some vector field called vector potential  A P

   B P A P 
 

  JA 0
 0A 



2
0A J  

Coulomb’s gauge



28-Jan-13 Preparatory School to the Winter 
College on optics

30

Magnetostatic Field in Matter

 Magnetic fields- due to electrical charges in motion.

 Examine a magnet on atomic scale we would find tiny currents.

 Two reasons for atomic currents.

• Electrons orbiting around nuclei.

• Electrons spinning on their axes.

 Current loops form magnetic dipoles - they cancel each other
due to random orientation of the atoms.

 Under an applied Magnetic field- a net alignment of - magnetic
dipole occurs- and medium becomes magnetically polarized or
magnetized
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Magnetization
If m is the average magnetic dipole moment per unit atom
and N is the number of atoms per unit volume, the
magnetization is define as


 
M N m

Mdm 
or

 

 

 
2

2

3

m Ia Am

Am AM
m m
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Magnetic Materials
Paramagnetic Materials
The materials having magnetization parallel to B are called
paramagnets.

Diamagnetic Materials
The elementary moment are not permanent but are
induced according to Faraday’s law of induction. In these
materials magnetization is opposite to B.

Ferromagnetic Materials
Have large magnetization due to electron spin. Elementary
moments are aligned in form of groups called domain
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The Field of Magnetized Object
Using the vector potential
of current loop r


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


0

2

ˆ
4

m rA
r

0 0ˆ
4 4

M n MA da d
r r

  
 

 
  

  
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bJ M

Bound Surface Current

Bound Volume Current
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Ampere’s Law in Magnetized Material

JB


0

fb JJJ




   MJJJB ffb




0

1


fJH




MBH



0

where

Integral form
fencH dl I 



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Faraday’s Law of Induction
• Faraday’s Law - a changing - magnetic flux through 

circuit induces an electromotive force around the circuit.

        
  
 d dE dl B da

dt dt
Є – Induced emf

E – Induced electric field intensity


   



  BE
t

Differential form of Faraday’s law



28-Jan-13 Preparatory School to the Winter 
College on optics

36

Faraday’s Law of Induction
Induced Electric field intensity in terms of vector potential


  



 AE V
t

For steady currents

 
 
E V V – Scalar potential

Induced emf in a system moving in a changing magnetic field

  
     



    BE v B
t
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Maxwell’s Equations
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Introduction to Maxwell’s 
Equation

• In electrodynamics Maxwell’s equations are a set of four
equations, that describes the behavior of both the electric
and magnetic fields as well as their interaction with matter

• Maxwell’s four equations express

– How electric charges produce electric field (Gauss’s law)
– The absence of magnetic monopoles
– How currents and changing electric fields produces

magnetic fields (Ampere’s law)
– How changing magnetic fields produces electric fields

(Faraday’s law of induction)
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Electrodynamics Before Maxwell

Gauss’s Law

No name

Faraday’s Law

Ampere’s Law

( )

( ) 0

( )

( )

o

o

i E

ii B

Biii E
t

iv B J






 

 


  


 

 

 

 

  

AE V
t

B A


  


 

 

 
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Apply divergence to (iii)

   
The left hand side is zero, because divergence of a curl is zero.

The right hand side is zero because 0.

BE B
t t

B

  
          

  

     

 

Apply divergence to (iv)

   oB J   
    

Electrodynamics Before Maxwell (Cont’d)
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• The left hand side is zero, because divergence of a curl is zero.
• The right hand side is zero for steady currents i.e., 

• In electrodynamics from conservation of charge

0

J
t

t






  




 


 

is constant at any point in space which is wrong.

Electrodynamics Before Maxwell 
(Cont’d)

0J  
 
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Maxwell’s Correction to Ampere’s Law

Consider Gauss’s Law

 
o

o

o

E

E
t t

E
t t

 


 

 
 

 
 

 
 

 

 

 



This result along with Ampere’s law and the conservation of charge equation 
suggest that there are actually two sources of magnetic field.
The current density and displacement current.

o
D E
t t

 


 

 
Displacement current
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Amperes law with Maxwell’s correction

t
EJB ooo 


 

Maxwell’s Correction to Ampere’s Law 
(Cont’d)
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General Form of Maxwell’s Equations

Differential Form Integral Form

     

0      

     

     

                                        

o

o o o

E

B

BE
t

EB J
t




  

  

  


   




   


 

 
 

  

1

0
oS V

S

C S

o enc o o
C S

E da dV

B da

dE dl B da
dt

dB dl I E da
dt




  

 

 

   

   

 



 

 

 

 

  

   







 
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Maxwell’s Equations in vacuum

• The vacuum is a linear,
homogeneous, isotropic
and dispersion less medium

• Since there is no current or
electric charge is present in
the vacuum, hence
Maxwell’s equations reads
as

• These equations have a
simple solution in terms of
traveling sinusoidal waves,
with the electric and
magnetic fields direction
orthogonal to each other
and to the direction of
travel

0

0

o o

E

B

BE
t

EB
t

 

 

 


  




 


 
 

 

 
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Maxwell’s Equations Inside Matter
Maxwell’s equations are modified for polarized
and magnetized materials. For linear materials the
polarization P and magnetization M is given by

o e

m

P E

M H

 







 

 

And the D and B fields are related to E and H by

 
   

1

1

Where  is the electric susceptibility of material, 
 is the magnetic susceptibility of material.

 

o e o

o m o

e

m

D E P E E

B H M H H

   

   




    

    

    

    
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Maxwell’s Equations Inside Matter 
(Cont’d)

• For polarized materials we have bound charges in addition to 
free charges

ˆb

b

P n

P





 

 



 

ˆb

b

K M n

J M

 

 

 

  

• For magnetized materials we have bound currents
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Maxwell’s Equations Inside Matter 
(Cont’d)

• In electrodynamics any change in the electric polarization 
involves a flow of bound charges resulting in polarization 
current JP

P
PJ
t






 Polarization current density is due

to linear motion of charge when the 
Electric polarization changes

pbf

bft

JJJJ 



t

densitycurrent  Total

density charge Total

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Maxwell’s Equations Inside Matter 
(Cont’d)

• Maxwell’s equations inside matter are written as

0

t

o

o f o p o b o o

E

B

BE
t

EB J J J
t




    

 

 


  




    


 

 
 

    

 

f o
o

f o
o

f

B P EJ M
t t

B M J E P
t

H J D
t







 
    

 

  
       


  



     

    

   
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Maxwell’s Equations Inside Matter 
(Cont’d)

• In non-dispersive, isotropic media ε and µ are time-independent 
scalars, and Maxwell’s equations reduces to

0

E

H

HE
t

EH J
t

 







  

  


   




   


 

 

 

  
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Maxwell’s Equations Inside Matter 
(Cont’d)

• In uniform (homogeneous) medium ε and µ are independent of
position, hence Maxwell’s equations reads as

 
S

S

C

 
C

                         

0                           0 

                

           

f f enc

S

f f enc

D D da Q

H H da

H dE E dl H da
t dt

E dH J H dl I D d
t dt



 



   

   


      




      







 



   

   

     

      







          
S

a

Generally, ε and µ can
be rank-2 tensor (3X3
matrices) describing
bi-refringent
anisotropic materials.
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Maxwell’s equations in integral form:

Gauss’ Law:
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Auxiliary Relation:

No Magnetic Monopoles:
Faraday’s Law:
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Ampere’s Law:

Auxiliary Relation:
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1) Apply the integral form of Gauss’ Law at a dielectric interface/boundary 
using  infinitesimally thin Gaussian pillbox extending slightly into dielectric 
material on either side of interface:

Gives: (at interface)
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The positive direction is from medium 2 (below) to medium 1 (above)

(at interface)

Likewise: (at interface)

Since: (at interface)
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Since: (at interface)

Similarly, for (no magnetic monopoles), then at an 
interface:

(at interface)

Since:
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Then: (at interface)

Or:

Effective bound magnetic charge at interface

(at interface)

3) For Faraday’s Law: EMF,

At interface between two different media, taking a closed contour C of
width l extending slightly into the material on either side of interface.
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(in limit area of contour loop → 0, 
magnetic flux enclosed → 0)
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4) Finally, for Ampere’s Law:
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Where = TOTAL current (free + bound + polarization) passing 
through enclosing Amperian loop contour C

In the limit that the enclosing Amperian loop contour C shrinks to zero 
height above/below interface- the enclosed area of loop contour → 0,

Then:
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Similarly:

If       is unit normal/perpendicular to interface, note that             is 
normal/perpendicular to plane of the Amperian loop contour.
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In the limit that the enclosing Amperian loop contour C (of width l)
shrinks to zero height above/below interface, causing area of
enclosed loop contour → 0, then:

Since:
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We also see that: (at interface)

(at interface)and:

components of B are discontinuous at interface by

components of H are discontinuous at interface by

components of Μ are discontinuous at interface by
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If

where A is the magnetic vector potential, then:
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For linear magnetic media:



Potential Formulation of 
Electrodynamics 1

• In electrostatic

0E 
 

E V  
 

In electrodynamics

0E  
 

But

0B  
 

B A 
 

Putting this in Faraday’s Law

 

0

E A
t

E A
t

E A V
t

E V A
t


   


     
      


   



  

 



 
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 . . 0

and from

0

B A

E V A
t

E B
t

    


    




  


   

    

  

Explain Maxwell’s ii and iii 
equations 



Potential Formulation of 
Electrodynamics 3

As

o

E 


  
 

2

o

o

AV
t

V A
t







 
       


    



 


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This replaces Poisson’s 
Equation in electrodynamics 

Gauss’s Law

Now consider Maxwell’s i and iv equations
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o o o
EB J
t

   
   



  
Now consider

Putting values of E and B we get

 
2

2o o o o o
V AA J
t t

    
               

   
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    2

2
2

2

Using vector identity

Re-arranging

o o o o o

A A A

A VA A J
t t

    

     

                       

   

   

These equation carry all information in 
Maxwell’s equations 
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2

o

V A
t
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
     





2
2

2o o o o o
A VA A J

t t
    

                      

   

Four Maxwell’s equations reduced to two equations using potential formulation. 
Potentials V and A are not uniquely defined by above equations.



Gauge Transformations
• Two sets of potentials, (V, A) and (V’,A’)- corresponds to

same electric and Magnetic fields.
• Write;

A’=A+α and V’=V+β- as A’s give same B
→ curl of α=0, which implies α= grad. of λ. As the two

potentials also give same E, then from
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E V A
t

E V A
t t

 

   


 
     

 

 
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Gauge Transformations 1
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0

P utting  value o f  w e get

0

T he term  in  paratheses is  independen t o f position

U sing  th is  w e get

t

t

t

A A

V V
t

 



 

 





   



     


  



   
  


Such changes in V and A are called Gauge Transformations



Coulomb’s and Lorentz Gauges
Coulomb Gauge
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0A 

Using this we get 2

0

V 


  

It is Poisson’s equation, setting V=0, we get

0

1
4

V d
r
 


 

Scalar potential is easy to calculate in Coulomb’s gauge
but vector potential is difficult to calculate



Coulomb’s Gauge
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    

                 

 

The differential equations for V and A in Coulombs gauge reads



Lorentz Gauge
The Lorentz gauge: 
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2
2

2

2
2

2

This is design to eliminate the middle term in eqn. for A

and equation for V will become
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

 



Lorentz Gauge
The Lorentz gauge treats V and A on equal footing.

The same differential operator
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a n d
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



2
2 2

0 0 2t
  

  




called  the d’Alembertian



The Electromagnetic Waves
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Electromagnetic Wave Equation

The electromagnetic wave equation is a
second-order partial differential equation that
describes the propagation of electromagnetic
waves through a medium or in a vacuum.
To obtain the electromagnetic wave equation
in a vacuum we begin with the modern
'Heaviside' form of Maxwell's equations.
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From Maxwell’s Equations to 
the Electromagnetic Waves 1

The Wave Equation

Maxwell’s equation in 
free space – no 
charge or no current 
are given as 
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From Maxwell’s Equations to the 
Electromagnetic Waves 2

Take curl of 

[ ]

BE
t

BE
t


  




   


 

   

Change the order of differentiation on the R.H.S

[ ]E B
t


   

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From Maxwell’s Equations to the 
Electromagnetic Waves 3

As
o o

EB
t

  
 



 

Substituting for               we haveB
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B EE E
t t t

EE
t

 

 

  
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  


   
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      

  

•As µo and εo are constant in time
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From Maxwell’s Equations to the 
Electromagnetic Waves 4

Using the vector identity 2( )E E E    
      

gives,
2

2
2( ) o o
EE E
t

  
    



   

In free space 0E 
 

And we are left with the wave equation
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From Maxwell’s Equations to the 
Electromagnetic Waves 5

02

2
2 





t
BB oo




Similarly the wave equation for magnetic field

oo

c


1


where,
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Electromagnetic Wave Equation in 
Vacuum

02

2
2 


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
t
EE oo


 02

2
2 





t
BB oo




The solutions to the wave equations, when there is no source
charge present can be plane waves - obtained by method of
separation of variables



28-Jan-13 Preparatory School to the Winter 
College on optics

89

Solution of Electromagnetic Wave 

• Plane electromagnetic waves can be expressed as

 

     
ˆ

1 1ˆ ˆˆ

i t k r
o

i t k r
o

E E e n

B E e k n k E
c c





 

 



   

 

 





Where      is the polarization vector and. is a propagation vector.n̂ k̂



Electromagnetic Plane waves
• Plane wave - a constant-frequency wave whose

wave-fronts (surfaces of constant phase) are
infinite parallel planes of constant amplitude
normal to the direction of propagation
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Real Electromagnetic Plane waves

The real electric and magnetic fields in the form of a mono-
chromatic plane wave with  propagation vector  kˆ and 
polarization  nˆ

 
   

ˆ, cos( )

1 ˆ, cos( )

o

o

E r t E k r t n

B r t E k r t k n
c





  

   

   
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Homogenous Wave Equations Inside 
Matter

2 2
2 2

2 2

2 2
2 2

2 2

1 1                                

1 1                                 

o o

o o

E EE E
t t

B BB B
t t
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  

 
   
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Vacuum Matter

The homogeneous form of the equation - written in terms of
either the electric field E or the magnetic field B - takes the
form:
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Homogenous Wave Equations Inside 
Matter 1
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Permittivity: ε=εrεo (εr is dielectric constant)
Permeability: µ=µrµo (µr is relative permeability ≈1

n=Refractive Index
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Energy and Momentum of 
Electromagnetic Waves

The energy per unit volume stored in electromagnetic field is
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)(cos

1

222

22
2

2

tkxEEU

EE
c

B

ooo

oo











28-Jan-13 Preparatory School to the Winter 
College on optics

95

Energy and Momentum of 
Electromagnetic Waves 1

As the wave propagates, it carries this energy along with it. The
energy flux density (energy per unit area per unit time)
transported by the field is given by the poynting vector
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For monochromatic plane waves
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Polarization of Electromagnetic Waves

•Polarization of electromagnetic waves is very complex- consider
the optical (light) part of EM waves.

•Historically, the orientation of a polarized electromagnetic wave
has been defined in the optical regime by the orientation of the
electric field vector.

•Natural light is generally un-polarized- all planes of propagation
being equally probable.

•Light is a transverse electromagnetic wave.



Linear Polarization

• In electrodynamics, linear polarization or
plane polarization of electromagnetic
radiation is a confinement of the electric field
vector to a given plane along the direction of
propagation.

• The plane containing the electric field is 
called the plane of polarization.
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Linear Polarization 

• Linear polarization can be horizontal or vertical

x

y

zE

Horizontal Polarization

Electric Field

Magnetic Field
Electromagnetic 
Wave

x

y

z

E

Vertical Polarization



Circular Polarization

• A polarization in which the tip of the electric field vector-
at a fixed point in space - describes a circle as time
progresses.

• The electric vector - at one point in time - describes a
helix along the direction of wave propagation.

• The magnitude of the electric field vector is constant as
it rotates.

• Circular polarization is a limiting case of the more
general condition of elliptical polarization.
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Circular Polarization
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Elliptical Polarization

• Elliptical polarization - is the polarization of
electromagnetic radiation such that the tip of the
electric field vector describes an ellipse in any
fixed plane intersecting - and normal to - the
direction of propagation.

• An elliptically polarized wave may be resolved
into two linearly polarized waves in phase
quadrature- with their polarization planes at right
angles to each other.
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Elliptical Polarization

28-Jan-13 Preparatory School to the Winter 
College on optics

102



28-Jan-13 Preparatory School to the Winter 
College on optics

103

References

1. CLASSICAL ELECTRODYNAMICS
By J. D. Jackson (WILEY)

2. INTRODUCTION TO ELECTRODYNAMICS
By David. J. Griffiths ( PRENTICE HALL)

3. A GUIDE TO  POLARIZED LIGHT
By Edward Collett ( SPIE)



28-Jan-13 Preparatory School to the Winter 
College on optics

104

THANK YOU


