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1 REVIEW OF QUANTUM MECHANICS
1.1 CLASSICAL MECHANICS

Classical mechanics is based on the assumption that any physically interesting
variables connected with a system/particle, such as its position, velocity or its
energy can be measured with arbitrary precision and without mutual interfer-
ence from any other such measurement. Laws of classical mechanics can be
expressed in various mathematical forms,

1. Newtonian mechanics

2. Hamiltonian mechanics

Hamiltonian of a physical system gives its total energy

H=T+V

Quantum mechanics is based on the realization that the measuring process
may affect the physical system. It is therefore impossible to measure simultane-
ously certain pairs of variables with precision. In quantum mechanics physical
system is described by a state vector or wave function, and variables are repre-
sented by operators.

Quantum mechanics can be expressed by,

1. Wave mechanics

2. Dirac’s notation

1.2 'WAVE MECHANICS:

A quantum mechanical system (such as atoms, molecules, ions etc.) are given
by its wave function ¥ (r,t). Ttself ¢(r,t) has no physical meaning but it allows
to calculate the expectation values of all observables of interest.

Measurable quantities are called observables and are represented by hermi-
tion operatorsé. Expectation value is given by

(0) = / Eri* (r, ) O (1 1).

1.3 Probability:

The probability of finding the system in the volume element d>r is
U (r, )0 (r, ).

As the system exist, its probability of being somewhere has to equal 1.
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The time development of wave function is determined by schrodinger equation,

ih%w(n t) = Hiy(r,t),

where H is the Hamiltonian of the system. The energy of the unperturbed
system for instance an atom not interacting with light is the sum of its potential
and kinetic energies

1.4 Stationary state:

Stationary states of schrodinger equation are those for which space and time
dependence are separated,

P (r,t) = Up(7)e ™1,
Time independent equation,
HU,(7) = E,Un(7) = hwn, U (7)),

where U,,(7) is an eigen function of H with eigen values E,, = hw,. The eigen
values of hermition operators are real numbers. The eigen functions of hermitian
operators belonging to different eigen values are orthogonal, and eigen functions
having same eigen values are normal.

/ U (1)U (1) AT = Sy,

and complete

> Ui (r)Un(r) = 1.

The completeness relation means that any function can be written as a linear
combination of the U, (r,¢). The wave function

P(rt) =D u(rt) =Y Co(t)Un(T)e ™,

here C),(t) are the expansion coefficients.

C,(t) - constant for problems related to free part of Hamiltonian

C(t) - change in time if we include the interaction part of Hamiltonian.
Putting the values of ¢ (r,t) in the normalization condition we get

Z |Cn|2 =1,

gives the probability of finding the system in state n. The expectation value in

terms of C,,
<O> - ECnC;ZOnm e~ wnmt,

n,m



Where

omz/fugmémm,

and
Wnm = Wn — Wy,

1.5 DIRAC NOTATION:

The wave function of wave mechanics corresponds to the state vector in Dirac’s
formulation of quantum mechanics. The relation between state vector and wave

s
function is analogous to using vectors instead of coordinates. A vector V can be
expanded as,

V = V.2 + V0.

In Dirac’s notation
V) =Velz) +Vyly).

x-component of a vector is obtained by

— A

V'x - V’L‘v

in Dirac’s notation
(x| V)=V, and (y|V)=V,.

Using these Eqn’s. we can write

V) =[xy @l V) +ly) (ylV)
(lz) (=] +1y) CuDIV)

The identity diadic (outer product of two vectors)

|z) (2| + [y) (y| =1
for n dimensions

V)

> In) (n V)
dolmyinl = I

where { |n)} are complete set of vectors, i.e. a basis. The inner products
(n| V) are the expansion coefficients of the vector|V') in this basis. Expansion
coefficients are in general complex.

([V) = (VIE)"

I= /d3r|r> (r|

For continuous basis { |r)}



The wave vector
wie) = [ @rin olv)

Where the wave function

() = (rl¥)
Px) = (=)

The expectation value of the operator O is given by,
(O) = w®IOw(t)
Hermitian

WOIol®) = [wOlo )] = Wl oL@y

ot = 0O

The set of eigen vectors of a hermitian operator is complete. This means that
any arbitrary vector |¢(t)) can be expressed as a sum of orthogonal eigen vectors.

n=0

Eigen vectors are orthonormal

owm = 1 forn=m
= 0 forn#m

Completeness relation for discrete case is
Z | Xn) (Xul =1
n
The state vector |¢) in terms of position eigen states (which are continuous).

() = / 47 |2} (z] )

[ 7 1) o

The normalization of eigen vectors with a continuous set of eigen values must
be normalized with the help of dirac delta function having properties,

b(x—xz) = 0 if r#z

Slx—2) = o0 r=zx

(xlz) = b6x—=a)

1



State vectors obey the Schrodinger’s equation
i) = Hl).
|¥) > Cne ! n)
n

Expectation value can be written as

|¢> _ Z C:Cmefi(wnfwm)t |TL> Onm

Where

1.6 Two level system:
Wave function for two level system is
U(r,t) = Cola(T)e ™" + CoUy(7)e™"!
State vector
[4) = Cae ™" Ja) + Coe ™" o)
1.7 SCHRODINGER, INTERACTION AND HEISEN-
BERG PICTURES:
1.8 SCHRODINGER PICTURE:
The interaction of radiation with matter involves a hamiltonian.
H=H,+V

H, - unperturbed energy
V' - Interaction energy
The corresponding Schrodinger equation

—1

b0y = FHWO)
B0) = T AV,

—iHt

[9(8) = e [(0))

Expectation value of an operator O which represents the observables.

<O> = (¥ ()| O(0) [ (1))

Operator O is independent of time, but [¢(¢)) is a function of time. This is the
schrodinger picture way of writing the expectation value of an operator.



1.9 HEISENBERG PICTURE:

In Heisenberg picture total time dependence goes into operator, so state vector
is independent of time, the expectation value of an operator in Schrodinger
picture is,

(0) = (W] 0) [y (1))
It can also be written as,

O(0)e ™ 5 (1))

—i1Ht +iHt

(OW) = W] e~

Where H is the total Hamiltonian. According to Schrodinger equation,

L0
ifi [¥(6)) = H (1)

Integrating

—iHt

<
—~
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~—
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Il
g
S
<
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=
~

lp(®) = [¥(0)

Define

Then R R
(O®) = WO O l(0)

Which is called Heisenberg picture. In this all time dependence lies in opera-
tor.while wave function is independent of time.

1.9.1 Why called Heisenberg picture?

o) = e 00)e
: 1 A —17 A
O() = ZHO+—-OH
. 7 .
o) = ﬁ[H,O}

Which is Heisenberg equation of motion.That is why we call it Heisenberg
picture. In between two extremes of Schrodinger and Heisenberg picture. There
is an intermediate picture called interaction picture.



1.10 INTERACTION PICTURE:

Consider again the equation,

As

H=H,+V

H - free Hamiltonian,

V- interaction part of Hamiltonian,

If the time dependence created by the interaction energy is only assigned
to the state vector and rest of time dependence goes to the operator, then
expectation value is written as,

(0W) = (v |F=00) ™ | 5(0))
(Om) = (@'®)]0w [ ®)

Interaction picture state vector

W1 (1)) = e [1(0))

Equation of motion

- —iV
B 0) =5 v0)
This equation is simpler than ordinary schrodinger equation, but requires the
calculation of Of(t), where

—iHot

O(0)e™7

+iHot
o

Of(t)=e

In interaction picture both state vector and operator are time dependent. The
interaction picture state vector,

(1) =D Cult) )
n
The schrodinger picture state vector is

W) =S ca(t)n) = > Cu(t)e ™7 [n)

n

Where s
cn(t) =Ch(t)e™r

The complete time dependence is given by ¢, (t), but due to interaction energy
is given by C,(t).



1.11 PAULI SPIN MATRIX:

Another method to describe two- level atom is a use of 2 X 2 matrix notation.
The eigen function U, and Uy, or eigen vectors |a) and |b) can be represented by

the column vectors
—_—

b - ue(?)

And the wave function and wave vector by the column vectors

v = | ¢ |

Ca
e = (&)
The energy and electric- dipole operators are written in terms of the Pauli spin
matrices as
(01
% = {10
- 0 —i
% = i o
1 0
0 -1

These matrices are hermition, but the spin- flip operators

Oz

o+ =

)
)

are not hermitian, o_ flips the system from upper- level to a lower- level

(o) =7 o) ()= (V)

While, o flips the system from lower- level to the upper- level

(V)= (0 0)(5)=(0)

(04 +i0y) = <
(04 —i0y) = (

and o_ =

N~ N~
_ o OO

oo O



1.12 TWO LEVEL ATOMIC SYSTEM AND HAMIL-
TONIAN IN TERMS OF MATRICES:

State vector of a system can be written as,

[9(r,1)) = Cae™ ™" |a) + Cre™ ™" |b) ,

Which corresponds to the wave function
(1, t) = ColUa(T)e™ " + CpUy (7)™

The matrix form from for the unit vectors (eigen vectors) |a) and |b)are

P(r,t) > Coe™ et ( (1) ) + Cpe ™t ( (1) ) = ( gzz:zi:: )
The two- level Hamiltonian of the semi-classical treatment is given as,
H = Tiwa |a) {a| + Vap |a) (b] + Voa [b) (al + P [b) (0]
In matrix notation
H_<Haa Hab>_<hwa Vab )
Hyq,  Hyy Via  hewp
Thus the matrix form of the schrodinger equation is

zhi Coem@at N hw, Vap C, e wat
dt \ Cpe ™t | =\ Viy hwy Cheiwrt



1.13 EXPECTATION VALUE OF DIPOLE MOMENT
OPERATOR FOR A TWO-LEVEL ATOM:

The expectation value of any operator is given by
(¥ 0 V) = CaC;Oaa + CbC;Obb + {CaCfoabe_iwabt + c.c}
The expectation value of “er” is
(W] er [) = eCaCy (al 7 |a) + eCoCy (b] r |b) + {ecaoge—i(%—%ﬂ (bl 7]a) + c.c}

As the diagonal matrix element of “er” between eigen states of the Hamiltonian
generally vanishes.

€rea = (aler|a) = e/d3rU;(7‘)rUa(r) =0
eryy, = (bler|b) = e/d3rU§(r)TUb(T) =0

eray, = f{aler|b) = e/d3rU;(r)rUb(r)

= e(2)

(er) = eC’aC,;"efi(“’“f“”’)trbaqLc.c

In matrix form

10
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1.14 DENSITY OPERATOR

For a given physical system there exist a state vector |1)) which contain all pos-
sible information about the system. If we want to extract a piece of information
about the system we must calculate the expectation value of the corresponding
operator O

(0), ,, = WIOw)

In many situations we do not know |¢/) but we know Py, probability of finding
the system in |¢). For such a situation we not only need to take quantum
mechanical average but also the ensemble average over many identical systems
that have been similarly prepared

<<O>Q M>ensemble N %:PMMOA i

It is called a quantum statistical system.

> o
({(Ogu). . = ZE P @IOW

|
—

|
(]
(]
<8
=

@}
S
=
2

Il
™
=
o
he)
=
Il
7]
O>
:.i/
g

where
p=> Pylt) (¥l
P

The sum of diagonal elements gives

<<O>Q M> y =Tr(Op) = Tr(pO)

p=> Pyl) Wl
P

where

is called density operator. In a particular case where all Py are zero except the
one for a state [t,) then
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pP= |’lpo> <wo|

and state is called a Pure state. It follows from the conservation of probability
that Tr(p) = 1. For a pure state

For mixed case

1.15 EQUATION OF MOTION FOR DENSITY OPER-
ATOR

p = %FMWWI
%;fuﬂ¢><w|%w»<¢h

From Schrodinger equation, we know that

‘Q.
I

: 1
i) = )

Also _ L
(W] = = (lH

Using these values, we get

. 1
po= 7 2 PulHIW) (W] - [v) (] H]
(
= i[H — pH]
T
where p and H are operators.
. 1
p=Hpl

It is called “Liouville equation” or “von Neumann equation” and it is equivalent
to Schrodinger , but more general (because it has quantum mechanical as well
as statistical aspect). In the above equation we have not included the decay
of atomic levels due spontaneous emission. The excited atomic levels can also
decay because of colllision and other phenomena. The finite life time of the
atomic level can be dicribed by adding phenominalogical decay terms to the
density operator.

12



The decay rates can be incorporated in equation by a relaxation matrix I,
which is defined by the equation

1

p=—11H 7]~ 5{T.p}; {Tp+ oI} = (T, p}

Equation of motion for the density matrix elements is

2

. 1 1
Pij = 7 ;[Hikpkj — piHyj] — = Zk:[rz‘kpkj + pirl'k;]

1.16 TWO LEVEL ATOM

) = calt)|a) +cp(t) [b)
po= )Wl
(W] = calt)(al +c5(t) 0l
po= [¥) (W] = lea(®)]? |a) (al + ca(t)cy (t) |a) (0] + ca(t)es(t) [b) (al + |ea(t)]* [B) (B
Paa = (alpla) = |ca|? probability of upper state
o = (blp|b) = |cp|? probability of lower state
Pab = CaCl is propotional to dipole moment
Poa = CbCy= Pgp

In matrix form )
c CaCh
p=( Il ‘8
cicy el

CaChPba + €.C = pap(2,1)Pra + c.C

P(z,t)

In spiner notation,

w = (o) W= (e )
. Ca * * _ |Ca|2 CaCt
P = < C ) ( [ )— < ey ‘Cb|l2 >

1.17 EQUATION OF MOTION FOR DENSITY MATIRX
ELEMENTS

Consider i=a,j=a
=L > H Hia ! o + parlkal
Paa = ih akPka Pakt1ka 2 akPka Pakl ka

k=a,b k=a,b

using this

13



H - Ho + Y
: 1 !
Paa = Z_h kZEa b[(HO)ak:pk:a - pak(HO)k?a] - 5[7apaa + paa'Ya]

1
+% Z VakPra — Pak Vial

k=a,b
(How = (alHolb) = Byfalt) = 0
(Ho)aa = <a|Ho‘a> = Ea and V;w’:%b =0
) 1
paa = —yaém +E Z [Vabpba N pab‘/ba]
k=a,b
) 1
P = —Vo0ub +E[%apab — PoaVab]
. . 1
Pap = —(iwo +Yab)dan +¢_h[Vabeb = PaaVar]
where
1 1
Yab = 5(Ya+ ) and Wo = 7 (Fa = Eb)

9 h

The population of excited level decays in time because of spontaneous emission.
In soome cases the upper level decays to ground state lower level then

. 1
Paa = _Fpaa +ﬁ[vﬂbpba - p“bea]

and

. 1
Pop = prb +E[%apab - pbaV;zb]

Where T is the upper-to-lower level decay constant.

14



1 Quantization of the Free Electromagnetic Field

Dirac combined the wave and particle like aspects of light. Wave nature shows
all the interference phenomena. Particle nature shows the exitation of a specific
atom absorbing one photon of energy.

Classical field fails to explain

1. Spontaneous emission
2. Atomic decay

3. Lamb shift

4. Photon statistics

An interesting consequences of the quantization of the radiation is the fluc-
tuations associated with the zero-point energy or so called vacuum fluctuations.
These fluctuations have no classical analog and are responsible for many inter-
acting phenomena in quantum optics.

1.1 Spontaneous Emission and Atomic Decay

A phenomena which we described phenomenologically in our treatment of semi-
classical theory requires a quantum field. Spontaneous emission is often said to
be the result of stimulating the atom by vacuum fluctuations.

1.2 Lamb Shift

According to the classical description of the field (Dirac theory) the 2S and
2P 1 states in the hydrogen atom should have equal energies. Experimentally
the two levels differ by approximately 1057 MHz. a fully quantized treatment of
the field and atomic systems gives impressive agreement with the experimentally
observed shift, because of the radiative correction due to the interaction between
the atomic electron and the vacuum shift the 23 1 level higher in energy by around
1057 MHz relative to the QP% level.

1.3 Photon Statistics

In order to explain the photon statistics the concept of a particle, the photon
is either necessary or convenient. For the quantization of the electromagnetic
field in free space, it is convenient to begin with the classical description of the
field based on Maxwell’s equations. In MKS system

Vv.D = 0
V.B = 0
0B
oD
VxH = 5



where in free space

D = EoE

here €y and i, are the free space permitivity and permeability respectively and

1
Moﬁo—c—2

where ¢ is the speed of light in vacuum. Using these Maxwell s equations we
know that F (r,t) and also B (r,t) satisfies the wave equation

1 0°E

VE—-—==—==0

2 ot?
Following the Dirac approach we associate each mode of the radiation field
with a quantized simple Harmonic oscillator. Energy of the Harmonic oscillator
(classically) is given by the hamiltonian

1 >
H = —mw?s? + —
2 2m

and quantum mechanically it is written as

A2

1 AZ D
H=-mw’c +-—
2 + 2m

2 Mode Expansion of The Field

2.1 Quantization of Field Inside the Cavity of Length L

Electric field is linearly polarized in the x direction. Expanding the field in the
normal modes of the cavity

Eqy (2,t) = Zquj (t) sin (k;z)

j corresponds to different modes such that

A 2 j
L=j§; A= % and L = %,Wherej =1,2,3,...
Where q; is the normal mode amplitude with the dimensions of length (position)
and
1/2
. Qw?mj
/ V€0
jme
where w; = ck; = T



is the cavity eigen frequency. V = LA is the volume (A is the transverse area
of the optical resonator) m; is a constant with the dimensions of mass, included
to make an anology with SHO nothing to do with mass of photon. The E.M.F
is assumed to be transverse with electric field polarized in the x-direction. Such

field satisfies
V.E=0

The nonvanishing component of the magnetic field in the cavity is obtained by
using Maxwell’s 4rth equation i.e,

oD oF
H = —_— = —_—
v ot~ ot
A A A
i j k
VxH = 2 9 2
ox oy 0z
H, H, H.
N(OH, O0H, A(OH, OH, 2 0H, O0H,
e 7 f— — .
y 0z 0z ox ox dy
x-component of (V x H), is written as
OH, O0Hy\ _ . 0F,
oy 0z ) Vot
H, =0, z is the direction of propagation
OH, 0 .
—5, = ‘3 Zj:qug' (t) sin (k;2)
= € Z qu.j (t) sin (k72) .
J
As 1 9
sin (k;z) = _k_j& cos (k;z),
putting the value of sin(k;z) in the above equation we can write
6Hy 0 Qj (t) €0

g5 (t) €
H, = ;A_j (Jk—j> cos (k;z) .
The classical Hamiltonian of the field i.e, the (total energy of the field ) is

H= %/dT (c0E2 + poHy)



where the integration is over the volume of the cavity. Substituting the values
of E, and H, in the above equation and performing the integration we get,

1 .2
H = B Z <mjw?qj2- +quj)
J
1 20, P
= = miwiq; + ——
where p; = mj(jj is the canonical momentum of the jth mode. The above

equation expresses the hamiltonian of the radiation field as a sum of indepen-
dent oscillator energies. Each mode of the field is dynamically equivalent to a
mecahanical harmonic oscillator.

3 Quantization

The present dynamical problem can be quantized by identifying ¢; and p; as
operators, which obey the commutation relations

ANAN .

[q.i’ Pj’] = gy

AN A AAN
[qj,qj/} = [pj,pj/} =0.

It can be transformed as
N 1

0 = ——(m;w;q; +1ip;) exp (tw;t
J \/W( jwjq; +ipj) exp (iw;t)

and ' 1
a; = ————— (m;jw;q; —ip;)exp (—iw,t
i T j( jwjq; — ip;j) exp ( it)

h
Qmjwj

~ . [mywih . . ,
p; = —i mj;dj (ajexp(—zwjt)—aTjexp(zwjt))

The commutation relations between ?ij and a' follow from those between @ and
]/7\.7' )

2
|

(Ej exp (—iw;t) +a'j exp (iwﬂf))

A AT 1 . A A . A A
1 . . . .
= Sy, [—imjw; (th) 4 imjw; (—ih)]
= 1.



Similarly

oA AA
[aj,aj/} = afj,alfj/ =0

A AN
ajaly| = Oy

i
The operators aanda are referred to as the destruction and creation operators,
they are not hermitian. Substituting the value of g; and p; in the equation for
Hamiltonian we get

1 h ) I ' AN A
H = Z Qmjw? <2mjwj) (a? exp (—2iw;t) + a®; exp (2iw;t) + aja;f + a}aj
J
1 how T A A
+_2m- (_mg2wj ) (a? exp (—2iw;t) + a2j exp (2iw;t) — aja; - a;aj
J
hw; NN
- >(%) (%ai v ai%)
J

As

7N
>
.
\
s>
>
.
> S———
Il
[a—

AN
éI\,ja; = a;r-é\,j +1

thus we can write

A
1
H = E hwj (a}?zj + 5)
J

t
In terms of é\zjand Qj, the electric and magnetic fields can be written as

E,(z,t) = Z €5 (aj exp (—iw;t) +a'jexp (iwjt)) sin (k;2)
J
H,(z,t) = —iec Z €5 (?ij exp (—iw;t) —a' jexp (iwjt)) cos (k;z)

J

where the quantity

o (P
7 €0V

has the dimensions of an electric field.



3.1 Quantization of Field Inside a Large Cavity of Finite
Length L

Consider the field in a large but finite cubic cavity of side L. We consider the
running wave solutions instead of the standing wave solutions. The classical
electric and magnetic field can be expanded in terms of plane waves.

E(rt) = Z € kE Ol XD (—iwgt +ik.r) + c.c
k

using Maxwell’s equation i.e,

oD
VXH_E

we get
A
€

k epay exp (—iwgt + ik.r) + c.c

H(T,t):izkx

w
Ho k

where the summation is taken over an infinite discrete set of values of wave
vector k = (kg,ky, k), €, is a unit polarization vector, cy, is a dimensionless

amplitude and
heoy 1/2
R (260V)

Periodic boundary conditions require that

2mn 2mn 2mn
ka: = - 9 k = z y V2 = -
L Y L L
where n,,ny, n, are integers 0,+£1,42,---. A set of numbers (ny,n,,n.) defines

a mode of electromagnetic field. For transverse field
V.D=0

which requires
k.€x =0

There are two independent polarization directions of @k for each k. Changing
from a discrete distribution of modes to a continous distribution i.e,

;:2<%>3/d3k

where factor of 2 accounts for two possible states of polarization. The num-
ber of modes available in a cavity is infinite, however the number of modes
whose frequency lies between w and w + dw is finite. This is the same num-
ber of field modes having the magnitude of k, between k and k + dk. Making



transformation from rectangular coordinates (k, ky, k.) to the polar coordinates
(ksin @ cos ¢, ksin 0 sin ¢, k cos 0) , the volume element in k-space is written as

&k = k*dksin0dfde
w2

— dw sin §dOdg.
C

The total number of modes in the volume L? in the range between w and w+dw

is given by
L 3 2 T 27
2(-) - f“’/ sinade/ do
2 C 0 0

L3w?
= 53 dw
T2

dN

Radiation field is quantized by identifying o, and aj by the harmonic oscil-

+
lator operators é\tkand Qk respectively, which satisfiy the commutation relation
T
[aky } 1

The quantized electric and magnetic fields takes the form

E(rt) = Z € rEnar exp (—iwgt +ik.r) + H.C
k
1 k x /E\k A . .

H(rt) = m Z — Ekak eXP (—iwgt + ik.r) + H.C
0 k

where H.C is Hermetian conjugate. Seperating positive and negative frequency
parts of these field operators

ET (r,t) = Z €bE Ry EXP (—iwgt + ik.r)
k
i
E~(r,t) = Z ékakak exp (iwgt — ik.r)
k

where E (7, t) is the annihilation operator and E~ (r,t) is the creation operator.



4 Fock or Number States of Radiation Field

Consider a single mode of the field of frequency w having creation and an-
nihilation operators a' and @ respectively. Let |n) be the energy eigen state
corresponding to the energy eigen value E,, i,e.

1
Hln) = hw <aTa+ 5) [n)
= Enln) (1)
applying operator a from the left of the eigenstates we have
1
Haln) = tw <aTa + 5) aln) (2)

[a, aq = aal —dla=1
— adl —1=4dla

Putting in Eq. (2) we get
1
Haln) = hw <anr -1+ 5) aln)
= hw (aaTa —a+ g [n)

)
= ahw (aTa+ % - 1) )

= a(hw(a'a + l) — hw) [n)

2
= a(F, —hw)|n)
= (E, —hw)a|n)

where a |n) is an energy eigen state with eigen value (E,, — hw) . Operator a low-
ers the energy and therefore it is called annihilation, destruction or absorption
operator.

— 1) =—|n),

n

is an energy eigen state but with the reduced eigen value i,e.
E,1 = (E,—hw)
Hin-1) = E,_1|n—1),
and «, is a constant which will be determined from the normalization condition,
(n=1|n-1)=1.

If we repeat this procedure n times we move down the energy ladder in steps of
hw until we obtain
Ha|0) = (Ep — hw) a |0)



FE)y is the ground state energy . E,—hw is smaller than Eg i,e, F,, —hw is negative.
Since energy eigen value cannot be negative

al0) =0
The state |0) is called the vaccum state. (in which no photon is excited).
.I. 1
H|0) = hwla a+§ |0)
1
1
= EO = §hw

is the energy of the ground state. Now we go step by step up as

E,.1 = FE,—hw
E, = E,1+hw
For n = 1 we can write
El = E() + hw

1 3
= §hw+hw = §hw

Similarly
E2 = E1 + hw
3
= §hw + hw
5
It can also be written as
1
Ey, = (2 + 5)1’1&17
1
FE, = <n + 5) hw



[n) is also an energy eigen state of the number operator
n=a'a
The normalization constant can be now calculated
n=1|n—-1)=1

as

E}
|
—
3
=
|

a = +ne”?
If we take the phase of the normalization constant a, to be zero then o, = \/n

aln) = a,|n-1)
— VAln-1)

now for operator af

1
Hd'|n) = hw (aTa + 5) al |n)

T
hw (a’Lanr + %) [n)
using aa’ = ata +1,
a-‘—
Ha' | n)=hw (aTaTa +a + 3> |n)
= af (B, +1tw)n)
1
(o (“T“ * §> a'ln)) = (En+hw)a|n)

Thus a' |n) is also an energy eigen state of the field with eigen value E,,+hw.
We define

AT

a

n+1 = —n

[n+1) ﬂn| )
E,.1 = BE,+hw

= Hin+1)=FE,1|n+1)

10



using the same procedure we get

a'n) =vn+1n+1)

A repeated use of the above equation gives,

(@)
nl

n) =

| 0)

The energy eigen states |n) are called fock states or photon number states. They

form a complete set of state i,e.

> In)(nl =
n=0

1

The energy eigen value are discrete in contrast to classical electromagnetic
theory where energy can have any value. State vector is written as the super-

position of energy eigen states. i,e

) =3 culn)

where ¢,, are complex coefficients. The energy Fy = %hw is called zero-point en-
ergy. The energy levels for Q.M oscillations associated with the electromagnetic

field are given as

The operators a and a' are not
Hermitian such as,

a1

a2

5
§hw
3
§hw

1
§hw



Different energy eigen states of the field are orthagonal. The only non-vanishing
matrix elements of @ and a'are of the types;

=11 alnp=va
n+1 | a'|n)=vVn+1

An important property of | n) is that the expectation value of the single mode
linearly polarized field operator vanishes. Using

E, (2,t) = e(ae™ ™ + aTe?) sin kz,

or
E (’I", t) _ gaefsz»lk:.r + E*aTeZWt*Zk”'

<TL | E(T, t) | ’fl> — €<TL | a | n>efiwt+ik.r +5*<TL | a’r | n>eiwt7ik.r -0

Now in order to find the average value of (E?), we write

(n | E?|n)=|el’ (n]aal +ala|n) 4 e2e 2420 | g2 | n)
. . 2
+€262zwt72zk‘r<n | (]; | ’fl>
1
(E*) = (2n+1)|ef> =2 <n + 5) EE
AE? = (E?) —(E)?

1
2 <n+ 5) le®,

as (E)2 =0. For n =0 i,e. in vaccum
AE? 40,

but is equal to
AE? = |e|

From these equations we conclude that the mean value is zero but fluctuations
are present. These fluctuations are considered to be responsible for spontaneous
emission, Lamb shift etc.

12



1 The Coherent Photon States

The single-mode states of physical importance are not the indivisual number
states | n) (because the electromagnetic wave generated by practical light source
do not have definite numbers of photons), but the linear superposition of states
| n). There is a wide variety of possible superposition states.

A superposition state can be constructed for which uncertainties in the ex-

pectation values of the phase operators cgsqb and siAnzé are both equal to zero.
Such states have An = oco. They cannot be excited in any real experiment.
Another kind is the coherent state. A coherent state has equal amount of un-
certainities in amplitude and phase. A field in coherent state is in a minimum
uncertainity state. For coherent state an electric field variation approaches that
of classical wave of stable amplitude and fixed phase, in the limit of high exci-
tation. They are improtant because, they are the closest quantum mecahnical
approach to a classical electromagnetic wave. A single mode laser operated well
above threshold generates a coherent state excitation.

The coherent state | a) is the eigen state of the positive frequency part of
the electric field operator or the eigen state of the destruction operator of the
field.

A
ala)=ala),

where a is complex, | a) in terms of linear superposition of number state
| n) is given by

@)= Culn) &
n=0

>

o)=Y Cna|n)

n=0
n=0
= 04+ CV1[0)+CovV2|1)+...
= ZCH+1\/n+l|n> (a)
n=0

From eqn(1) multiplying with o we can write

a | oz)zZCnoz|n)
n=0

>

o) = Z Cpa | n) (b)
n=0



comparing eqn(a) and (b)

Chivn+1 = Cha
C(n\/H = Chia

«
C, = —C,_
N
(0% (6% (0% «
c, = X 20
" nyn—1+yn—2 V1 ¢
- 2

putting in Eqn(1),
=Cy Z \/_ | n)

the constant Cy can be found by normalization

o 0 a*" o™
« a) = CFC ZZ n|m
< | > 0 Onzonzomm< | >
) [e'e] ‘a|2n
(@ | o)=Y 1A
n=0
using
|
n=0 s
we can write
1 = |Co|2 |ev]
ICo\2 —|al?
C L
0o = €

Therefore

Another way of proving the above relation which interpret | &) as a super-
position of number state is,

=> [l (1)

where Y | n)(n |=1 is the completeness relation for number state. As

|n) = | 0) (2)

[\)



(nl= (0] L

3

Putting in Eqn(1) we can write as

|a>—;|n><0|%a>

we know that

a | a=ala

@" | a=a"[a)

— la = 1n% 010

The value of (0 | ) is obtained by normalization i,e

(a|a)y=1

N D I v LA LIS

= Yl ap

hence proved.



Some other representations of the coherent state

n=0
(a]‘>7z
=0
o2 am” aTn
=Yy S0y

2
| ) =e2 e [ 0)
since we know that e~ ¢ | 0) =| 0)

2
= |a)= el ganlgma"a | 0)

where D () is called the displacement operator.

| @) = D ()] 0)

1.1 Baker-Hausdorff identity

If
(A, B], A] = [[A,B], B] = 0
then
eA+B _ ,—[AB]/2,A,B
Let we have A = aa' and B = —a*a
poal—ata  _  ,—}[-aala’ataaaal]erelemea
o~ 3laf’[~alataal] jaa’ —a”a

another definition

=] a) = e’ "¢ | )

The other equivalent antinormal form of D («) is obtained by using A =
—a*a and B = aa', then we get



or by using

A+B 3[A,B] B A

(& = e2

lo|?

D(a) = e e agaa

The operator D («) is a unitary operator. i,e.
D (a) =D (—a) = D! (a)

It acts as a displacement operator upon the amplitudes a and a' ie.

D71 (a) aD () = a+a
A
D a)a'D(a) = a'+a*
This can be proved by writing
D (O() _ eaalf —a*a
DT (O() _ ea*afaaT — D71 (Oé)

using these equations we get
D™ (a) aD (o) = e agmaal Geaal g—a’a
For any operators A and B we have

2
e_aABeaA:B_OC[A;B]—’—%[A’[A’BH—'_'”

A
A
For A=af and B=a
Caat A aat
e ae* = a+a
A

D' (a)aD(a) = a+a

Similarly for

A
here A =3 and B = af
A
— D 'a)a'D(a)=a"+a"
Prove

2
e *4Be*4 = B—a[A,B] + e [A, [A, B]] + ...

2!
2A2 2A2
(1—aA+a2, N )B(l—i—aA—i—az' +)
a2
=B~ a(AB~BA)+ 5 (..)
2
P «
e ae :a—a[aT,a]—l—i[aT,[ahaH—&—
:aT—&—a



1.2 Properties of coherent states

Properties of a cavity mode excited to a coherent state | a) can be detrmined
by the method applied to the number state | n).
1- The mean number of photon in the coherent state | «) is given by

(n) = {a|n|a)=(a|da]a)=a

therefore

n=0m=0 n:

* n
A2 (a4

= ¢l ) n
n!

n

Let 2 = |a|*, and also

therefore we can write

(n) = e~lof? af?

Find

(o | 7”?2 | ) = el Z (a*a)"n2

- —|a‘2z| {n (n—1)+n}

Let again = = |a|®, by the definition

" L0 "

n
32
= ac—e

Ox?



SO we can write
/\2 2 2 4 2
o n? | a) = eIl ol (ja)" + |af?)

Root-mean-square deviation is

An = TE P = \/lal?

Where |oz\2 is the mean number of photons in the cavity mode and uncer-
tainty spread about the mean is equal to the square root of the mean number
of photons.

ii)- Photon statistics: photon distribution function:

The probability of finding n-photons in the field | ) is

p(n)=|n|a)
where

<n|a>:e#z%<n|m>
m=0 :

67‘042 |a|27l
p(n) = ————
o 67<n> <n>n
N n!

is a poisson distribution.
iii)- Coherent state is the minimum energy state: i,e

h
ApAqg = 5

A
@ and a' are not hermitian but their combinations are.
Let mj=1 at t=0r=0

b= —— (wi+ip)
2hw
¢ 1
ol = (wa — zﬁ)
2hw
adding these two we get
1 A + /\T w A
—la+a = —
2 on ‘!
A n A’r 2w A
a+a = —
h q



and

A
L—a) = g
;\) and CAI are hermitain and represent observable quantities,
[a.p] =
VIV

for a coherent state we have to prove that

ApAqg = g
B = (alpla)="2 (@)~ (ah)
@ = (alala)=afa]a)
W = Y2 (a—a

= fT( | a® +a'? —aa’ —ala | a)
2h
= fTw(on +a* —2a*a — 1)
Ap* = (p?) —(p)
h
= —7“)(042 +a*? —2a%a —1) + —w(oz2 +a* —2a*a)
_ hw
2
Similarly
h
A¢? = —
! 2w
h
AqAp = 5



iv)- Coherent states are not orthagonal, but are normalized. i,e.

(a]a) =o' 3 7(0‘:!“)” —1

n

For two different complex numbers a and (.

al? 1812

(@ | B=e Te T e P20
= [a|B) =e oA,

The | o) form an over complete set of states and lack of orthogonality is a
consequence of this.i, j, k are orthogonal and independent of each other. If we
divide space in 5 directions they would not be orthogonal and independent of
each other. Therefore over complete. i,e. there are many more coherent states
| @) than there are states | n).

Completeness relation:

For number states

S l=1

Similarly the set of all coherent states | a) is a complete set and satisfy the
completeness relation.

1
— [ & =1
- [@alajal
Let
o = rew
d*a = rdrdd

2 m 2 *M
d*a a){a 2/6_% 4 me_% a—n d’a
[#a | alal S e e S
|an+m+1

oo 2
_ e N iy d|a|do
= e e my{n «
] > [ m)(n | dlaf

27
/ dge =m0 = on§,
0

as



therefore
s L
[#a | aai=am [C 30 al e njan | da)
1 [ T
= a0 [ 2lalddad ol e o

putting

2
z = |af
dr = 2|ald]|al

/d2a | a){a :w;%/ooodx 2"e™" | n)(n|

oo
/ dr 2"e ™™ = nl
0

/d2a a)(a |:7r2%n'\n><n|
= 7wy |n)n]
1/d2a | a)al=1

™

The completeness property is essential for the utility of a set of states.| a) is
a complete but not orthogonal. As a result any coherent state can be expanded
in terms of other states.

@)= [Ea ) o)

1 1 1
= - /d2a | ') exp {—5 la]® + o/a* — B o/

This shows that the coherent states are overcomplete.

10
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