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ELECTROMAGNETIC WAVES IN
VACUUM

THE WAVE EQUATION

< In regions of free space (i.e. the vacuum) - where no electric
charges - no electric currents and no matter of any kind are

present - Maxwell’s equations (in differential form) are:

1) |VE(F,t)=0 2) |VeB(F,1)=0

0B(7.1) O (F,t) 1 OE(F.1)

<]\

3) VX E(F,1)= 4) VxB(F,1)= e,

ot \ ot ;c2 ot

Set of coupled first-order partial differential equations
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ELECTROMAGNETIC WAVES IN
VACUUM...

We can de-couple Maxwell’s equations -by applying the

curl operator to equations 3) and 4):

vx(vxg)=vx(_3_’3] vx(vxlg’):vx[%a—]
t c” ot
V(94E) -ViE=-Z(VxB) | =V(94B)-viE=L 2 (VxE)
ot ¢’ Ot
v 212 vl 2
ot\ ¢© ot c” ot\ ot
. 1 0’E . 1 0*B
= V2E=— — VzB=—
c’ ot e or
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ELECTROMAGNETIC WAVES IN
VACUUM ...

These are three-dimensional de-coupled wave equations.

Have exactly the same structure — both are linear,

homogeneous, 2nd order differential equations.

Remember that each of the above equations 1s explicitly

dependent on space and time,

Ze. E=E(F,i) and g=§(?,l‘) :j
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ELECTROMAGNETIC WAVES IN
VACUUM...

Thus, Maxwell’s equations implies that empty space — the
vacuum {which 1s not empty, at the microscopic scale} —
supports the propagation of {macroscopic} electromagnetic

waves - which propagate at the speed of light {in vacuum}:

‘c :1/\/60;10 =3x10° m/s
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MONOCHROMATIC EM PLANE
WAVES

 EM plane waves propagating in free space with speed c= f1 =w £ -
consisting of a single frequency f - wavelength 4 =c¢ f - angular
frequency @ = 27 f and wave-number k = 2z /4 — called
Monochromatic.

* Visible region of the EM spectrum /~380 nm (violet) <4 <~ 780
nm (red)}- EM light waves of a given frequency / wavelength are
perceived by the human eye as having a specific-single colour.

Single- frequency EM waves are called mono-chromatic.
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MONOCHROMATIC EM PLANE
WAVES

EM waves that propagate e.g. in the +z~ direction- with no explicit x-
or y-dependence are known as plane waves.

For a given time= t the wave front(s) of the EM wave lie in a plane

which 1s L to the Zz -axis,

X

/

y
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MONOCHROMATIC EM PLANE
WAVES

There also exist spherical EM waves — emitted from a point
source — the wave-fronts associated with these EM waves are

spherical - do not lie in a plane L to the direction of propagation

of the EM wave

PotN

SoURcE
ofF EM
RADIAT16H

At
= Portion of a spherical wavefront

4""’—V associated with a spherical wave
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MONOCHROMATIC EM PLANE
WAVES

If the point source is infinitely far away from observer- then a
spherical wave — plane wave in this limit- the radius of

curvature — oo and a spherical surface becomes planar as

R

¢ % Criterion for a plane wave: |4 <R,

Monochromatic plane waves associated with E and B

N ~ .
B(Z,t):é i( kz~ ~ot) E(Z,t):EOei(kZ‘wt)

\ \
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MONOCHROMATIC EM PLANE
WAVES

E (z,1)= Eoef(b_a’t), z,t)= Boef(kz_wt),
- / . \

Pr(’)\pagating n Pr(’)\pagating 1n

+Zz direction +Zz direction

’El |

n.b. complex vectors: n.b. complex vectors:
= i5 A e iS5 A
e.g. E =Ee"x e.g. B =Bey

n.b. The real, physical (instantaneous) fields are:

Very important
to keep in mind!!
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MONOCHROMATIC EM PLANE
WAVES

Maxwell’s equations for free space impose additional constraints
on E, and B,

Ql

Since: VeE and:

(ﬁ)

=0
Re[E]) -0
These two relations can only be satisfied

V(7,t) if VeE=0 V(7,t) and VeB=0 V(7,1

Thus: (ﬁol'i:') =0 and (6-5) =0 become:
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MONOCHROMATIC EM PLANE
WAVES

[3£+3ﬁ+35}(§0e"(‘2‘“")):0 and [6 i+ 254 2 s}(ﬁoe"(’”‘“)):o
| ox oy Z

Now suppose we do allow:
E,=(E,X+E,p+E,2)e’ = E,"

o= ~)

iy
polarization in x—y—Z (3-D)

(Box3+Boyj} +Bm§)ez-5 _ B0

o

—
~

o
& J
WV

polarization in x—y—2 (3—D)

(0 o o ) o
—F+—J+—15 ME,Z+E, J+E, 2)e’e" ™ =0

( ) _
iJ?: + ij} + ié o(Box.f +B y+ Boj)e"‘se'(kz‘“”) =0
(Ox oy 0Oz ¢ °
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MONOCHROMATIC EM PLANE
WAVES

Eoe Eoy s Eo, = Amplitudes (constants) of the electric field
components in X, y, z directions respectively.

B, B,,, B,, =Amplitudes (constants) of the magnetic field
components in x, y, z directions respectively.

~ A 1 = 1 a ~ A T — i
; %E %" ™e? =0 x*B_ xe (e — 0
X 25
a > A kz—ot) i a A A il kz— -
5 y-Eoyye le=at) g5 J"Boyye (e—at) 15 _

25/01/2013
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MONOCHROMATIC EM PLANE
WAVES ...

O o 1 s ille-ot) i(lz—at) ; :

z+E ze (kemex) gid =ikEoze'(kZ Me® = 0| < true iff | E,,=0|!!!
z
O x b » i(e-or) i(ke—at) i
. z*B_ze (feme)gio =ikEOZe(k: e = 0| < true iff |[B,_=0|!
z

Maxwell’s equations additionally impose the restriction that an
electromagnetic plane wave cannot have any component of E or
B || to (or anti- || to) the propagation direction (in this case here,
the z -direction)

Another way of stating this is that an EM wave cannot have
any longitudinal components of E and B (i.e. components of E
and B lying along the propagation direction).

25/01/2013 14



MONOCHROMATIC EM PLANE
WAVES ...

Thus, Maxwell’s equations additionally tell us
that an EM wave is a purely transverse wave (at
least for propagation in free space) - the
components of E and B must be 1 to

propagation direction.

[he plane of polarization of an EM wave is

defined (by convention) to be parallel to E.

25/01/2013 15



MONOCHROMATIC EM PLANE
WAVES ...

Maxwell’s equations impose  another restriction on the
allowed form of E and B for an EM wave:

§XE=—8—B and/or: Vxé=%a—E
ot ¢’ ot
=Re(§><l§)=R o =Re(§x§)=Re Lza_E
ot ¢ Ot
e _/
Y - ' ol
Can only be satisfied V (7,7) iff:
ﬁxl§=—a—B and/or: §x§=%a—E
ot c” ot
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MONOCHROMATIC EM PLANE
WAVES ...

( =0 » N =0 =0 =0 - ~ =0
aﬁz/ aE}’ .i'-l' alz’x_ aﬁ}( "+ aﬁ}(_ 85.’(/ 2__8Bx .i__aBy 2 a 22
T Sy ot g

oz Jox

<!
X
b
I
>
Q

/ y _ ( =0 =0 _5/ » =0
- 7 OB 30 0 OE 7
VxB= F. Ly X+ B, _ P y+ » _ 9%, z= 128E x+12 . +128 z
ﬁy oz 0z /ax /8x c” ot ¢ ot c” /ot
\ \
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MONOCHROMATIC EM PLANE
WAVES ...

L = aé’y ) OB i aj;’y X b Can only be satisfied /
VXE=——x+—"y=——"T=-x—"""Y can only be true #ff the
0 5 5 5 ’
~Z Z ! J 1 \ x and y relations are
v E 8By - OB U aEx - 1 OE v - separately / independently
XB=——x+—2y=——2x+— - -
Oz Oz Y ot ot c: ot Y J satisfied V (r,t)!
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MONOCHROMATIC EM PLANE

_ = | OE 3 OE 0B
VXE __y_fz—ani —" }’=an — ikEoyz_ia)Box (1)
0z ot 0z ot
oF. . OB, oE. 0B,
;S5 sl BT L [#E =+ieB 2
Y a2 ot o @
. . | OB OB 3
= 7 __J,J2=L28Ex5é - |5 12 OF, — —ikBoy=—L2ia)on 3)
oz ¢ ot o0z ¢ ot %
oB,. 10E, | |88, 1 K, 1
e 2 S 2| I ./ 3 = |ikB_ =——ioE. | (4
0z Y ¢t Ot Y 0z ¢ Ot > ¢’ o ()

~ k
From (1): ikE,, =—ioB,, = |E, = —(gj B, or: |B = —(—] E,
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From (2):

MONOCHROMATIC EM PLANE

o= fi=(2af) 52 ]

25/01/2013

7

ikE,, =+ioB, = |E = +( JBoy or: |B, = +(
. 1 . | )

From (3): —ikB,, =——i0E, | = |B, =+—| — |E,
C c\ k
_ B - 1 . 1 [ @

From (4) 1 Box = —?Ia)Eoy — Box = —C—2 ; an

A

(%

=272'/1)

20




MONOCHROMATIC EM PLANE

I |
VxE (1) B, =—E,
oo
I .
(2) B, =+—FE, Maxwell’s Equations also
< have some redundancy
VxB (3) |B. = +l E encrypted into them!
oy 0x
c
1
(4) Box = __Eov
.o

Actually we have only

two independent relations:

25/01/2013
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1 1
Box - Eoy a’nd LBoy =+ _on
C ¥ C ¥
ZXY=—X ZXX=+)
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MONOCHROMATIC EM PLANE
WAVES ...

Very Useful Table:

XXy=2 YXX=-Z
YXZ=X ZX Yy =—X
ZXX=Y XXZ=—Yy

Physically this relation states that E and B are:
» in phase with each other.

» mutually perpendicular to each other - (E LB)L z*

25/01/2013 22



MONOCHROMATIC EM PLANE
WAVES ...

The E and B fields associated with this monochromatic plane
EM wave are purely transverse

The real amplitudes of E and B are related to each other by:

1
=<E| with |B =B +B| and ‘Eo=\/E§x+Efy\
C

o3
|

25/01/2013 23



Instantaneous Poynting's Vector
for a hhnearly polarized EM wave

5(z.1) =LE(z,t)xz§(z,t)=ﬂioRe{E(z,t)}xRe{é’(z,z)}

o

§(z,t) =LEOBO cos’ (kz—wt+5)(xx )
ﬂo H_/

~

=Z

5(2,1‘)=LEOBO cos’ (kz—at+0)2 (WattsJ
Ho

=EM Power flows in the direction of propagation of the EM
wave (here, the +z" direction)
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Instantaneous Poynting’s Vector
for a linearly polarized EM wave

This is the paradigm for a monochromatic plane wave.
The wave as a whole is said to be polarized in the x
direction (by convention the direction of E to specify the
polarization of an electromagnetic wave).

25/01/2013
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Instantaneous Energy & Linear
Momentum & Angular Momentum in
EM Waves

Instantaneous Energy Density Associated with an
EM Wave:

25/01/2013 26



Instantaneous Energy & Linear
Momentum & Angular Momentum in
EM Waves

2 2 .
But |8 = C—zE - EM waves in vacuum, and |5 =&,4,
C

Uy (F,1) el

2

£ B2 (F,1)+2 / (7 t)] 2(.9 E*(F.0)+¢,E (F,1))

A

Uppoet (75 1) = Upgg (751 )| - EM waves propagating in the vacuum !!!!
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Instantaneous Poynting’s Vector
Associated with an EM Wave

For a linearly polarized monochromatic plane EM
wave propagating in the vacuum,

S(7,t) =C{EOK]E02 cos’ (kz—wt+8)z2=ce,E. cos” (kz— ot +6)z

4

But

g (Fo1) = 6,2 (F 1) = 5,2 cos® (kz - ot + 6|

§(F,t) =cuy, (7,t)z

25/01/2013 28



Instantaneous Poynting’s Vector
Associated with an EM Wave

The propagation velocity of energy ‘mep c2|

Poynting’s Vector = Energy Density * Propagation Velocity

(r t) Ugr, (r t) Y prop

Instantaneous Linear Momentum Density Associated
with an EM Wave:

1
SOEM(r t) gﬂS(r t)=_2

C

25/01/2013 29



Instantaneous Linear Momentum
Density Associated with an EM Wave

For linearly polarized monochromatic plane EM waves
propagating in the vacuum:

0 s =%/€0Ej cos” (kz—a)t+§)2 = lgoEj cos’ (kz—a)z‘+5)2
c C . /

=Uppg

But: Upy (Fot)=¢€,E*(F,t)=¢,E, cos’ (kz—at +0)

. . - | 1 B ) "
@EM(’”’t)=goﬂoS(’"»’)=c—zS(f‘,t)=;uEM(r,t)z( 2g ]
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Instantaneous Angular Momentum
Density Associated with an EM wave

Depends on the choice of origin

25/01/2013



Instantaneous Power Associated with
anh EM wave

The instantaneous EM power flowing into/out of volume v
with bounding surface S enclosing volume v (containing
EM fields in the volume v) is:

()=o) _ [ Yoel D) o - § (1 da

P

EM

ot

The instantaneous EM power crossing (imaginary) surface is:

Py (t)=—[ S(F,t)dd,

The instantaneous total EM energy contained in volume v

|UEM (t) =_[ Upy (I_;,Z‘) df\ (Joules)
25/01/2013 R 32




Instantaneous Angular Momentum
Density Associated with an EM wave

The instantaneous total EM linear momentum contained in the

volume v is: o
P ()= [ @ (7o1)d7 [ g-m]
- sec

The instantaneous total EM angular momentum contained in the

volume v is:
kg-m’
SEC

25/01/2013 33



Time-Averaged Quantities
Associated with EM Waves

Usually we are not interested in knowing the instantaneous
power P(t), energy / energy density, Poynting’s vector, linear
and angular momentum, efc.- because experimental
measurements of these quantities are very often averages
over many extremely fast cycles of oscillation. For example
period of oscillation of light wave

1
0”cps

Z.Iight = l/ flight = 1 - 10_15 SCC/ CYCle = lfemto-sec)

We need time averaged expressions for each of these quantities
- in order to compare directly with experimental data- for
monochromatic plane EM light waves:

25/01/2013 34



Time-Averaged Quantities
Associated with EM Waves

If we have a “generic” instantaneous physical quantity of

the form:
Q(t) =0, cos” (a)t)

The time-average of Q() is defined as:

O() = Qcos’™(wt) A
Qo

(0)=(e() =50

25/01/2013



Time-Averaged Quantities
Associated with EM Waves

The time average of the cos? (wt) function:

lrcosz(a)t)dﬁl L_l_sta)t =i (1__0)+ sm20n'_0 =i T+s1n2a)r
: 12 4o |, 2r 20 27 20

or=27f7 |f=l/r |a)z'=2n'(r/z')=27r sin(@7)=sin(27)=0

(0(0)=(0)=32.

%J:cosz (wrt) dt=L[/] _1

p 2

Thus, the time-averaged quantities associated with an EM

wave propagating in free space are:
25/01/2013 36



Time-Averaged Quantities
Associated with EM Waves

EM Energy Density: |Ug, (7,1)= <uEM (F,t))

Total EM Energy: Ugy (t ) = <UEM (t ))

Poynting’s Vector: S(7,1)= <‘§EM (7.1 )>

EM Power: Py (1)= <PEM (t»

25/01/2013 37



Time-Averaged Quantities
Associated with EM Waves

Linear Momentum Density:

Linear Momentum:

Angular Momentum Density:

Angular Momentum:

25/01/2013

Prre (F51) = (P (751))

Prae (1) = (e (1))

Copg (Fo1) = (L (71))

£, ()= (£, (1))
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Time-Averaged Quantities
Associated with EM Waves

For a monochromatic EM plane wave propagating in free
space / vacuum in "z direction:

< (r t)>=—8 E2

|<§(F,t)> = lcgoEjf = c(uEM (F’t»él (“I/'::ts\

2

( Joules

3
m

1 1

(B (70) =502 = {5(0) =t (F0)

C

e
m2 -SCC

o
mM-SCC
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Time-Averaged Quantities
Associated with EM Waves

Intensity of an EM wave:

1(7)=(s(7.1)) = <|§(F,t)>=c<uEM (7.1)) =

The intensity of an EM wave is also known as the
irradiance of the EM wave - it is the radiant power
incident per unit area upon a surface.

25/01/2013 40
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Electromagnetic Wave
Propagation in Linear Media

Consider EM wave propagation inside matter - in regions
where there are NO free charges and/or free currents ( the
medium is an insulator/non-conductor).

For this situation, Maxwell’s equations become:

1) [VeD(7,t)=0 2) |VeB(#,t)=0

3) |VxE(F,t)=- 4) |VxH(F,1)=

25/01/2013 42



Electromagnetic Wave
Propagation in Linear Media

The medium is assumed to be linear, homogeneous and
isotropic- thus the following relations are valid in this

medium:

D(7,t)=¢E(7,t)

and

» & = electric permittivity of the
pediE(] +y ), x, = electric susceptibility of the medium.

» M = magnetic permeability of the

weﬂiun)j (1 +x,), x,, = magnetic susceptibility of the

g\edlu

25ﬂ)1 /2013
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electric permittivity of free space = 8.85 x 10712 Farads/m.

magnetic permeability of free space = 4x x 1077 Henrys/



Electromagnetic Wave
Propagation in Linear Media

Maxwell’s equations inside the linear, homogeneous and
isotropic non-conducting medium become:

1) |V-E(7,t)=0 2) |VeB(#,t)=0

OB (7 .. OE (¥
_9B(%1) 4) |VxB(F,t)= pe (77)

VxE(7,t)=
3) * (r) ot ot

In a linear /homogeneous/isotropic medium, the speed of
propagation of EM waves is:
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Electromagnetic Wave
Propagation in Linear Media

The E and B fields in the medium obey the following wave

equation:

L O’E(¥,t) 1 OE(F,1)
VZE(r’t) — = vrz atz

2
at prop

4 OB(7,t) 1 0*B(F,t)
V?B(7,t) = =
(7” ) g‘u at vr2 atz

25/01/2013



Electromagnetic Wave
Propagation in Linear Media

For linear / homogeneous / isotropic media:

e=Ke =(1+7,)s, K = £ (1+ z,) = relative electric permittivity
g,
u=K =1+, ) 7 K = £ (1+ Zm) = relative magnetic permeability
Hy
S - 1 1 1 1 1 .
o V gﬂ JKQ goKm /Ll ) \/KeKm \/goﬂ 0 v KeKm
1 <1 = 1 <
If KK, 21 thus KK B = |Voror = KK €c=¢
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Electromagnetic Wave
Propagation in Linear Media

_H . :
K, =— are dimensionless

Ho

E
K ==
&

o

Note also that since and

1
quantities, then so is K K

Define the index of refraction { a dimensionless quantity} ot the
linear / homogeneous / isotropic medium as:

JKK, =

n

U
80 ﬂ 0
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Thus, for linear / homogeneous / isotropic media:

Electromagnetic Wave
Propagation in Linear Media

v, =c¢/n (<)

prop

because

n=1

Now for many (but not all) linear/homogeneous/isotropic
materials:

p=pu,(1+ 7, )= M,

( True for many paramagnetic and diamagnetic-type materials)

Thus

25/01/2013

|;(m|~‘9(10—8)~0

K,=2=(+z,)=1 = |n=K,

Ho

and |v




Electromagnetic Wave
Propagation in Linear Media

The instantaneous EM energy density associated with a
linear/ homogeneous/isotropic material

uEM(F,t)—l( E2(?,t)+—Bz(F,t)]=—(E(F,t)-l3(?,t)+§(?,t)-

anll
—_—
~|
\’h*
) -
B —
~

with | D(F.t)=6E(F.1)| and |H (7,t)=~B(F.1)

25/01/2013




Electromagnetic Wave
Propagation in Linear Media

The instantaneous Poynting’s vector associated with a
linear/ homogeneous/isotropic material

3’(?,1‘)=%(E(F,t)x§(?,t))=(E(F,t)xﬁ(r7,t)) [anftsj

The intensity of an EM wave propagating in a linear/
homogeneous /isotropic medium is:

1 ] Watts

1]
—_
Tl
—_——
~|
—
T

I(7)

2\ n 7

1
E —F
Where N S

25/01/2013 50




Electromagnetic Wave

Propagation in Linear Media

The instantaneous linear momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

—

—

O (751) = 1S (7,1)

P"OP

37,1 gxﬁ( (7.))- ¢ (G )B(F,t))( ke J

m -ScC

The instantaneous angular momentum density associated with an
EM wave propagating in a linear/homogeneous/isotropic
medium is:

Loy (Fot)=

FX Py (Fot)=¢ Fx(E(F,t)xE(F,t)) ( ke ]

m-ScCcC

25/01/2013
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Electromagnetic Wave
Propagation in Linear Media

Total instantaneous EM energy: |Ugy ()= _L gy, (7,t)dt| (Joules)

5 . ~ " ~ k _
Total mstan’.caneous linear P (1) =_[ P (7.1)dT ( g m]
momentum: sec
Instantaneous EM (t)
Power: (t) = = —CfJ S(" f) da (Watts)

: - = ke-m?
Total instantaneous angular £ (1)= I i, (F.t)dz ( g-m ]
momentum:

SCC
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Reflection & Transmission of
Linear Polarized Plane EM Waves
at Normal Incidence

Suppose the x-y plane forms the boundary between two linear media. A
plane wave of frequency o- travelling in the z- direction and polarized in the
x- direction- approaches the interface from the left

E, @ V;@

Er
/ )‘ Y2
o B,

v

~

AN
S E NN

<

(==

AN

AN

AN

\\
N o

SO SN

A NN AN
b

;1/ <
7\

Interface

AN

NN

_4
o
=y
oo
N
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Incident EM plane wave (in medium 1):

Propagates in the +Z -direction (i.e. k, = +Iq = +§) with polarization |7,,, = +x

E'. (z.1)=E,_ 5™z with: ‘k‘ 27 A = ofv,

mc ( t) — _k X (" t) - 2 '(klz—m)j} since: kinc X ﬁinc =+ZX 'il - +J’>
1

Reflected EM plane wave (in medium 1):

Propagates in the —Z -direction (i.e. A;, = —}% =—2 ), with polarization |7,,; = +x
E.(z,1)=E, ei(_k'z_“)f with: kmﬂ = k| =y = ‘kl ’ =27/ = afv,
B, (z t)——k ><E e t)— 3 '( A5 1 since: A;,eﬂxﬁ,g,:—ﬁxfc:—fi
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Transmitted EM plane wave (in medium 2):

Propagates in the +2Z -direction (i.e. kAtmm = +I:t2 = +2), with polarization |n, = +X
E,.(zt)=E, ®z| with: |k, = k0| =k, =|k,|=27/2, = @)y,
R 1 2 = 1 - 1 Z— A - % e ~ ~ -
Bzram' (Z,t):— zran_s'XErrans (Z,t):—Eo e(k2 &X)y since: ktram;xntrans —+zZXX=+y
vV, vV, frans

Note that {liere, in this situation} the E -field / polarization
vectors are all oriented in the same direction, i.e.

~ ~

Pine = My = Mo = +X|  OF equivalently:

E,.(F,t) | Ep (7o) || E s (7,2)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

At the interface between the two linear / homogeneous /
isotropic media -at z = 0 {in the x-y plane} the boundary
conditions 1) - 4) must be satisfied for the total E and B -fields

immediately present on either side of the interface:

BC 1) Normal D continuous:  |gE- =&E;

(n.b. L refers to the x-y boundary, i.e. in the +Z direction)

BC 2) Tangential E continuous: E"o =E!

(n.b. || refers to the x-y boundary, i.e. in the x-y plane)
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BC 3) Normal B continuous:

J_ —
Bot

Iz,

1
B2 Tot

( L to x-y boundary, i.e. in the +z" direction)

BC 4) Tangential H continuous:

B
A

N >
B2Tot

1

Hy

(| to x-y boundary, i.e. in x-y plane)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For plane EM waves at normal incidence on the boundary at z =
0 lying in the x-y plane- no components of E or B (incident,
reflected or transmitted waves) - allowed to be along the +z"
propagation direction(s) - the E and B-field are transverse fields
{constraints imposed by Maxwell’s equations).

BC 1) and BC 3) impose no restrictions on such EM waves since:

(E} =E =0; E} =E: =0}and {B: =B’ =0; B}

lTot lTar 2Tot 2Tot lTot lTat ?

=B =0}

2 Tot 21" ot

= The only restrictions on plane EM waves propagating with
normal incidence on the boundary at z = 0 are imposed by BC 2)
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Linear Polarized Plane EM
Waves at Normal Incidence

At z = 0 in medium 1) (i.e. z < 0) we must have:

E‘” (z=0 t)=E

inc

(z Ot)+Eﬂ(z Ol‘) and

1 = 1 = 1
B” z=0,t)=—B, (z= Ot+—B z=0,t
B (2=00) =2 B (2=0.0) 42 By (2= 01

While at z = 0 in medium 2) (i.e. z = 0) we must have:

= (
Z =
E2Tot

S(z Ot)

and

LB (z

(z Ot)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) (Tangential E is continuous @ z = 0) requires that:

—_— —_—
~

EII

lTot

—
~

s | o7 | B (2=0,2) + E'reﬂ (z=0,1)= l:imm (z=0,¢)|.

BC 4) (Tangential H is continuous @ z = 0) requires that:

2

= 1] =
_Blllrat z=0 — _BgTot z=0
A H,
= e =
or: |—B,.(z=0,1)+ — B, (z=0,t)=—28,,, (2=0,1)
H
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Using explicit expressions for the complex E and B fields

é“:inc (Z’t) - Eo- ei(klz_mt)‘i. §inc (Z’t) = lk’\inc X E:inc (Zat) = ll:;::o. ei(klz—ﬂ‘)j}
inc v, v, inc
Ereﬂ (Zat) = E~'0rqﬂ ei(—hZ—at)i\: greﬂ (Z,t) — _’;reﬂ X g’r@fl (Z,t) — —lﬁonﬂel(_’ﬁ )3

into the above boundary condition relations- equations become
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BC 2) (Tangential E continuous @z=0):

BC 4) (Tangential H continuous @z=0):

Pk ko

—, M——E b

lull lu22

Cancelling the common e™%t factors on the LHS & RHS of
above equations - we have at z = 0 { everywhere in the x-y
plane- must be independent of any time t}:
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) (Tangential E continuous @ z = 0): Eo.-,.c I Eo,.,ﬂ = Eom
o : 1 =~ 1 =~ 1 =~
BC 4) (Tangential H continuous @ z = 0): E, __Eo,,ﬂ = E,
vy Y V)
Assuming that {x; and z»} and {v; and v,} are known / given for the two media, we have two
equations {from BC 2) and BC 4)} and three unknowns {E . E }

— Solve above equations simultaneously for

{E’o and E _} i terms of / scaled to E

5=
/J2V2

First (for convenience) let us define:

25/01/2013
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 4) (Tangential H continuous @ z = 0) relation becomes:

i~

Eoim: - Eoreﬂ = ﬂ Eotrans

BC 2) (Tangential E continuous @ z = 0):

Eoinc + Eons - Eotra

ofl ns

BC 4) (Tangential H continuous @ z = 0):

N S . _ MY
Eo,-,,c _Eo,qﬂ — IB Eot,w with 18= =
V)
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Reflection & Transmission of
Linear Polarized Plane EM

Waves at Normal Incidence
Add and Subtract BC 2) and BC 4) relations:

= = 5 2 ).
2E  =(1+ E = |E E, | (2+4
Oine ( ﬂ ) Otrans Otrans [ 1 + ﬁ ] ( )

= - . 1-f
2Eore_ﬂ =(1_’8)E0:mm — Eorsﬂ =[T]Eomm (2—4)

Insert the result of eqn. (2+4) into eqn. (2—4):

o {l;f](lfﬂjé : (L@
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Reflection & Transmission of
Linear Polarized Plane EM
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E= - ﬂ and |E, = 2 E
o 1+ ﬂ o 1+ ﬁ inc
Now: /= all and: |V, =£, v, == | where: n = ln and |n, = L2t
HaVs & n, &oly &0y
B= Yy _ /ul ¢ n] _ A /”1\/52#2/‘9 H, _H Vé \/[ }/( J= A
Y, /”2( c/n ) Hh /Uz\/ Eth/E,p, My VEa Hy H 614,
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Reflection & Transmission of

Linear Polarized Plane EM

Waves at Normal Incidence

Now if the two media are both paramagnetic and/or

diamagnetic, such that

l.e.

Am,

< 1

=, (14 2, ) ~ 1,

and:

ty = o (14 2, ) = 1,

Very common for many (but not all) non-conducting linear/
homogeneous/isotropic media

Then

HyV, V) n,

25/01/2013

j for |1y = p, = 4, or

Ko,

<1
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

£ (i) e )

()] a. o 2 0.
trans 1 I ﬂ inc 1 I (vl / v2 ) nc v2 I vl inc

We can alternatively express these relations in terms of
the indices of refraction n; & n,:

~ n—n, |~ ~ 2n ~
E =|"—2|E |and |E, =|——|E,
refl nl + n2 inc trans nl + nz inc
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Now since:  =FE, Y
o _ i5
o = Eomﬂe
.- 5
Orans Eotrans

O = phase angle (in radians) defined at the zero of time - t = 0

\

Then for the purely real amplitudes (%, , £, ., E, )

ofrans

these relations become:
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Linear Polarized Plane EM
Waves at Normal Incidence

[ for |1 = 1, = 4,
1- 4 Y vV, —V n,—n J7AY
EO =l —— |E 0. : : Eo. = l : Eo. ﬂ = 1
1+ p v,+v, ) ™ \m+n, | ™ LV,
E =2 |g =2 |g |2 |g
o \1+ g ) AWtV ) n+n, |
= for H=H=H,

Monochromatic plane EM wave at normal incidence on a
boundary between two linear / homogeneous / isotropic

media

25/01/2013
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For a monochromatic plane EM wave at normal incidence
on a boundary between two linear / homogeneous /

isotropic media, £ = #, = K4, note the following points:

If v, >v, (i.e. n, <n) {e.g. medium 1) = glass = medium 2) = air}:

- — is precisely in-phase with
E |2y (ATmp |4 E, , 18 recisely in-phase with
| | EO,-,.C because (Vz_v1)>0-
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Linear Polarized Plane EM Waves
at Normal Incidence

Ifv,<v, (i.e. n,>n,) {e.g. medium 1) = air = medium 2) = glass}

. 0 .
A N A E,, 15180 out-of-phase with
N S R R B E, because (v,-v)<0.
—_— " —n The minus sign indicates a 180°
- — 2 1 1 2 . -
L.e. Eo,q, = E, =- E, | = | phase shift occurs upon reflection
v, +V, n +n, , "
for v, <v, (1e. n, >n,) 1!
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E, 1salways in-phase with E, for all possible v, &, (m, &n,) because:

EO = L EO- = zvz EO- = 2 nl EO.
frans 1+4) ™ v, +V, n, +n,
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Linear Polarized Plane EM
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What fraction of the incident EM wave energy is reflected?

What fraction of the incident EM wave energy is
transmitted?

In a given linear/homogeneous/isotropic medium with

V= ’g"’u" c=c/n
ep

The time-averaged energy density in the EM wave is:

1

(upy (F,1)) ==¢E} (F) = €E,_(F) (Jouies J

2 m
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The time-averaged Poynting’s vector is:

The intensity of the EM wave is:

= ]

S(F,t)‘)=v<uEM(F,t)>=v(—gEj(F))=leij(F)=ngjm(F) [ :

2 2

1(?)5<

Note that the three Poynting’s vectors associated with this

problem are such that
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Sue 1(+2), 8,4 |(=2) and S, | (+2)

For a monochromatic plane EM wave at normal incidence on a
boundary between two linear /homogeneous / isotropic media,

Wlth :ul = luz = :uo

25/01/2013 76



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Take the ratios (Eo,,ﬂ / E, )and (Eom / E, ) - then square them:

2 2 2 2
E, _(1=F An=w| _[mn-n
E, 1+ f v, +V, n, +n,

and

2
E, \ (2Y (2, Y ( 2n Y
E, 1+ f v, +V, n,+n,
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Define the reflection coefficient as:

R() :(1,3,, (F)] . (S (",t)> w(um(R1)) (um (7)) 3&vE,, () E,,(7)
L. (7) <§W(7,r)) w(ume (7.1)) (ums (7.1)) +amEs_(F) E,_(F)
Define the transmission coefficient as:
(=) O sl ) (e 0) o
L)) (5. o)) wlom (R0)  (savE (7)) ks (7)

25/01/2013
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with t = i = K,

Reflection coefficient:

Transmission coefficient:
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But: (Eo,,ﬂ (F)]2 (1—,6’)2 [vz -V jz (nl —n, ]2
= —— | =|=—| =| —=| | &
E, (7) 1+ f v, +V, n, +n,
E, (Y (2 YV (2 Y (20 Y
E, (7) l1s Vi) - v, +V, - n,+n,

Thus Reflection and Transmission coefficient:

2 2
&Y, ( 2v, ] _ &V ( J
gV, \ v, +V, EV,

25/01 /20K
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1 1
C N T |
Now: L2V _ 'u2 but: “2th "2
o V), = = sl =—
,u N 1%

2 2
— (VZ Az L /ulv — M je ,B MV =

gl 1 (1 ]/ﬂz /Juﬂ’ H Vs - YV, e

v
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/\for,ulz,uzz/uo
R ESE e
ev, \1+p 1+ [ (l+,B)2 (v2+v1)2 (nl+n2)2

Thus:

2

Rz B A8 (A 1-2p4p vap 1a2pep (14P)
(1+8) (1+p)  (1+p) (1+B)’ (1+p)  (1+8)

2

| R(F)+T(F) :ll =EM energy is conserved at the interface/
boundary between two L/H/I media

25/01/2013 82



Reflection & Transmission of
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For a linearly-polarized monochromatic plane EM wave at
normal incidence on a boundary between two linear /
homogeneous / isotropic media, with £ = 1, = i,

Reflection coefficient: =Y N

o[22 (20 s (mn] (am)
I (F) E, (F) (1"‘)8)2 V, ™V n t+n,
Transmission coefficient:

= Im,m(r) ( )j 43 _ 4v,v,  4nn,
) (zm(;:)J ﬁ( () WA Ay (mem)
L M =H,=H,
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Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

A monochromatic plane EM wave incident at an oblique
angle 6,,. on a boundary between two linear/

homogeneous/isotropic media, defined with respect to the
normal to the interface- as shown in the figure below:

ref

SIS
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Reflection & Transmission of
Monochromatic Plane EM Waves at Oblique
Incidence

The incident EM wave is:

Einc (Fat)=§o. ei(Ei"c.F_ﬂ) and Binc(’_;’t)=l]€' XE‘ (F’t)
inc v

The reflected EM wave is:

B (ra)=F ™| g §rq,(f,t)=vlzé,,eﬂx§mﬂ(f,t)
1

The transmitted EM wave is:

—

oF —ot

l?,'h,am (7,t)= l?fom Sl aa |

frans

- | = =
(r>t) = _ktmns xEtrans (rﬂt)
V;

25/01/2013 85



Reflection & Transmission of
Monochromatic Plane EM Waves at Oblique
Incidence

All three EM waves have the same frequency- [ =a®/27

o= kmcv = kreﬂv = khansv2
kmc = kreﬂ = kl = (v_z] ktrans = (v_zj k2 = (ﬁj kn‘ans = (ﬁ] k2
Vl Vl n2 n2
v, =c/ni i=12

—.- —
~

o (o) = By (7o) + B,y (71)| and |By,, (Ft) = By, (Frt)+ By (71

Tot,

E
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Reflection & Transmission of
Monochromatic Plane EM Waves at Oblique
Incidence
Must match to the total EM fields in medium 2:

v

—
~

ETot2 (F’ t) = Etrans (F’t) and §Tot2 (F’ t) = éﬁam (’_;’ t)

Using the boundary conditions BC1) — BC4) at z = 0.

At z = 0- four boundary conditions are of the form:

(Emﬂ-F—mt) (Etmm -F—a)t)

(w)ei(’;mc-?‘—mt) +(—) ei (=) ei

They must hold for all (x,y) on the interface at z = 0 - and also must
hold for all times, t. The above relation is already satisfied for
arbitrary time, t - the factor e'*“tis common to all terms.
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The following relation must hold for all (x,y) on interface at
atz=0:

(w)ei(l?m-?-) +(—) ei(l?mﬂ-?) — (—) ei(l?ms-i-‘)

When z = 0 - at interface we must have:

— — —

k oF=k o=k  oF

i refl trans

kmcxx+kmyy=kmﬂxx+kreﬂyy=k x+k_ YV @z=(

trans, trans,,

The above relation can only hold for arbitrary (x, y, z = 0) iff
( = if and only if):
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The above relation can only hold for arbitrary (x,
y, z = 0) iff ( = if and only if):

k x k x k trans., X = k k refl, — k trans,
kznc k refl, Y= ktrans J — k kreﬂy — ktransv
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Reflection & Transmission of
Monochromatic Plane EM Waves at Oblique
Incidence

The problem has rotational symmetry about the z -axis- then
without any loss of generality we can choose k to lie entirely
within the x-z plane, as shown in the figure

Kine =Ko =Kpans, =0 andthus: £, =k , =k

inc refl,, trans, efl, trans,

The transverse components of k,,,k,,, k___are all equal and
point in the +x" direction.
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Reflection & Transmission of
Monochromatic Plane EM Waves at Oblique

Incidence
The First Law of Geometrical Optics:

The incident, reflected, and transmitted wave vectors form a plane
(called the plane of incidence), which also includes the normal to
the surface (here, the z axis).

The Second Law of Geometrical Optics (Law of Reflection):

From the figure, we see that:

ke, =Ko SO, | = |k, =k,5m0,,

Inc, Inc Inc

k

trans

=k

trans

sin &

trans

= [smf,  =sin Oreﬂ

Law of
Angle of Incidence = Angle of Reflection M Reflection!
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Incidence

The Third Law of Geometrical Optics (Law of Refraction
— Snell’s Law):

For the transmitted angle, &, .. we see that:

trans

k. sin0

inc

=k, sin@

frans

Inmedium1): ¢ =k =w/v, =nw/c=nk,

1

where k&, = vacuum wave number =27/4,

and A, = vacuum wave length

In medium 2): |k,,., =k, = ofv, =n,0/c=n,k,
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kinc Sin ginc = kzrans SIn gtrans = kl S einc = k2 S1n Htrans

k =k =nk |and|k_ =k =nk

mc frans o

: : : : L.aw of Refraction
k.smf@ =k sin@ = |n,sin6 =n,sml
1 inc "2 trans . - ‘ (Snell’s Law)

sin szns 7!

1

Which can also be written as:

Sin Qinc n2
Since ¢, refers to medium 2) and 6 . _ refers to medium 1)
. : sinf, n,
|n1 sin &, = n, sin (92| or: : —
X X sin€  n,

(incident) (transmitted)
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Monochromatic Plane EM Waves at Oblique
Incidence

Because of the three laws of geometrical optics, we see that:

Kool 2=0 kreﬂ °r |Z=0 = kzrans °r

inc

z=0

everywhere on the interface at z = 0 {in the x-y plane|

| ei(l-c;M -F—a)t) |

Thus we see that: =€ 0= € 2=0
everywhere on the interface at z = 0 {in the x-y plane}, valid
also for arbitrary/any/all time(s) t, since w is the same in

either medium (1 or 2).
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Monochromatic Plane EM Waves at Oblique
Incidence

The BC 1) — BC 4) for a monochromatic plane EM wave
incident on an interface at an oblique angle between two
linear/ homogeneous/isotropic media become:

BC 1): Normal ( z-) component of D continuous at z = 0 (no
free surface charges):

SI(EM +E )=82E " {using D=¢E

BC 2): Tangential (x-, y-) components of E continuous at z = 0:

(Eofncx,y + Eorﬂ;ﬂx,y ) o Eolmmx:y
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Monochromatic Plane EM Waves at Oblique
Incidence

BC 3): Normal (z-) component of B continuous at z = 0:

(B, +B,,)=5
refl,

oincZ otransz

BC 4): Tangential (x-, y-) components of H continuous at
z = 0 (no free surface currents):

Note that in each of the above, we also have the relation

ijzl

= 1 ~
B, =—kx
v
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Monochromatic Plane EM Waves at Oblique

Incidence
For a monochromatic plane EM wave incident on a
boundary between two L / H/ I media at an oblique angle
of incidence, there are three possible polarization cases to
consider:

Case I): E, L planeofincidence  Transverse Electric (TE)
(B Polarization

nc

| plane of incidence}

Case II): EZ.

nc

| plane of incidence Transverse Magnetic

{Binc 1 plane of incidence} (TM) Polarization

-—p

Case III): The most general case: E, = 1s neither L nor || to the plane of incidence.

{= E’W 1s neither || nor L to the plane of incidence}
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Monochromatic Plane EM Waves at Oblique

Incidence

Case I): Electric Field Vectors Perpendicular to the Plane of
Incidence: Transverse Electric (TE) Polarization

*A monochromatic plane EM wave is incident on a boundary
at z = 0 -in the x-y plane between two L/H/I media - at an
oblique angle of incidence.

*The polarization of the incident EM wave is transverse (L )
to the plane of incidence {containing the three wave-vectors
and the unit normal to the boundary n” = +z" }).

*The three B-field vectors are related to their respective E -
field vectors by the right hand rule - all three B-field vectors
lie in the x-z plane {the plane of incidence},
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Monochromatic Plane EM Waves at Oblique

The four boundary conditions on the {complex} E and B

Incidence

fields on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

eV 4RV 4E

0+0=0

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

( Eomc

~

[e)
tmnsy

+ Eomﬂy ) =E, | =|E,_+E,,

- Eotrans
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Incidence

BC 3) Normal (z-) component of B continuous at z = 0:

B :+B
( oi"Cz or“'ﬂz

(Boinc + Boreﬂz ) = Botran:
inc = e, + e, = Sin Hincx + COos gincz
kmﬂ =k o +k ~ =sin 6 _,x —cos Hmﬂz
ktrans = ktransx + ktransz = Sin Htmnsx +COs emmsz
N\ B 2 lE sinf +E sinf z‘=iE sinf)_ z
z|=£8 Z| Oine inc Oref refl Otrans trans
otra = vl v2
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Monochromatic Plane EM Waves at Oblique

Incidence

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):

Ay,

(B, %+B, 3)=—B,_%
M Nﬂx ﬂz x

= L(Eom (—cos Bmc)+l~i'% cos 9@)& =

g

1

Hy Vs

E, (—co0s6,,,)x

E,

nc

+E, =E, |(fromBC 2))

Using the Law of Reflection on the BC 3) result:

~ ~ v, sinf -
_ 1 . trans
Eol'nc u Eomﬂ - ( = 9 ] Eotrans
v2 Sl inc
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Monochromatic Plane EM Waves at Oblique
Incidence

Using Snell’s Law / Law of Refraction:

nsin@ =n,sin
inc 2

0

frans

v, sin

7

ne

=V, sin

7

frans

=

n

C

—Lsin@

ﬁsin@, lsint9. =isin9

trans inc
C

nc

frans

|

v, sin .

sin &

inc

]=1

v

From BC 1) — BC 4) actually have only two independent
relations for the case of transverse electric (TE) polarization:

1) |E

+

inc

E,

refl

- Eotrans

25/01/2013

2)

0

frans

~

(£.-E,)

~

E

ormns

v, oS

5

o i

cos @

inc
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Incidence
. J7AY cosO,
Now we define: p=| ! o=
/u2v2 COS Qinc
Then eqn. 2) becomes: G — Namﬂ =af Eom

Adding and subtracting Eqn’s 1 &2 to get:

~ 2 )= ~ 1-af ) -~
E = E (1+2 = _
Otrans ( 1 + o ﬂ] Oinc eqn ( ) Eomﬂ ( 2 ] Eotrans eqn. (2 1)
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Plug eqn. (2+1) into eqn. (2—1) to obtain:

) )
Oref 2 l+aff) ™ \l1+aff) ™

) _ E
7 = Ly and | == = 2
. 1+af . 1+af
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The Fresnel Equations for E | to Interface

=E | Plane of Incidence = Transverse Electric (TE) Polarization

with
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Incidence
For TE polarization:

Incident Intensity

k oz

=(%%%(Eﬁf]:m

{ot .S

Reflection Intensity

12 =32 )] = (S (B2 ) Jos6 =S (25 ) coser

Transmission Intensity

=S O] s (B ) Jeosbu = S (B ) costa
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Reflection and Transmission coefficients for transverse
electric (TE) polarization

cos @

mnc

1 E \2 5
1z, o(Ea) 050 [J[ em][Ez:m]
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The reflection and transmission coefficients for transverse
electric (TE) polarization
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Case II): Electric Field Vectors Parallel to the Plane of Incidence:
Transverse Magnetic (I'M) Polarization
*A monochromatic plane EM wave is incident on a boundary
at z = 0 in the x-y plane between two L / H/ I media at an
oblique angle of incidence.
*The polarization of the incident EM wave is now parallel to
the plane of incidence {containing the three wavevectors and

the unit normal to the boundary n” = +z" }).
* The three B -field vectors are related to E -field vectors by the

right hand rule -then all three B-field vectors are L to the
plane of incidence {hence the origin of the name transverse
magnetic polarizationj.
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The four boundary conditions on the {complex}E and B-fields
on the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no
free surface charges)

( ~ ~ ~
& \EOMZ + Eoreﬂz ) = Sontmm
[ . ~ : ~ .
& \_Eo,-,.c sin@, + E, sin Qeﬂ) =g, (—Eom sin@, )

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

)=E

oinc Otransx

(£, +E,
. refl

X

(Eo_ cos@,, + E,  cos 0.1 ) =FE, ©0s0,,,

112
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BC 3) Normal (z-) component of B continuous at z = 0:

=0 =0 =0
/ +B/ |=B = [0+0=0
inc, refl. trans

BC 4) Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):
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From BC1) at z = 0:

v &,V
where: ﬁz(ﬂH]:( ZZJ
A S

25/01/2013
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From BC 2) at z = 0:
~ ~ cos & - ~ cos
E, +E, |= ras \E, =ak . |la=——"
( O omﬂ) [ cOS eim, J Osrans Otrans where: e Qinc

Thus for the case of transverse magnetic (I'M) polarization:

E’W—E = PE, | and EM+E0 =ak

Otrans 0; refl Otrans

Solving these two above equations simultaneously, we obtain:
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~ 2 ~ ~ — -~ ~ o —
EO = EO- EO = u EO Eo 'B
trans o + ﬁ inc refl 9) trans refl o + ﬂ

The Fresnel Equations for B|| to Interface

=B | Plane of Incidence = Transverse Magnetic (I'M) Polarization
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Reflected & transmitted intensities at oblique incidence for
the TM case

LY =v < ﬂiff (t)>.2 = /%"151 (EZM )2] cos. = %‘91"1 (EjM )2 cos .
\
L =V, <§3{ (t)>.2 = i%vlgl (Ef: )2] cos ), = %51"1 (Efj )2 cos 0,
Y =v, <§m (t))-é = (%vzgz (Ej:u )chos 0 = %gzvz (E;Z” )2 cost
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Reflection and Transmission coefficients
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The Fresnel Equations

TE Polarization TM Polarization
(" - TE (- ITM
Eo | _(1-0p Eog | _(a—8
\Ejfc 1+ af \Ejf a+p
IE - M -
£, ) (1+ap) E,, ) (a+B)

o cos O, v = y _ /
n /
cos @, 1 !
B = AT [ TR 0 SR 7|
L N T e U o e W L
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Reflection and Transmission Coefficients R & T
R+T=1

TE Polarization TM Polarization

1E TE 2 ™ ™ \2 2
R E]rgﬂ Opef _ l—aﬁ R E]mﬂ Eow, a—

Yoone | EEX 1+ap D e Vv a+p
2 2

I, E, 4afp I, E, | 4op
Ip=|— |=0P| 7z | = 2 Ing =\ |~ P 2

Iinc Ea- (1+aﬂ) Iinc Eo‘ (a+ﬂ)

oS08 Orrans v, = /? _ /

cos@, 1 A
B = HY, &V, Iy, &N . — _ /
= - - — - —
my, &V, L &h, &) &1,
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Alternate versions of the Fresnel Relations

Fresnel Equations

TE Polarization TM Polarization
() () £ £
7T M lcos 6, — ™ cos O, ms g™ ™ cos 8, — M leos O, ns
[ %J\ﬂl/ \ 2 ) o |_\Fa) \ 4 )
EE |7 (0 £ M| AR
finc ™ lcos 0.+ ™ 1cos 0, finc ™ cos 0, + ™ lcos 0, ms
\ /4 ) A ) ) \ )
n n
2 —1Jcos 0, 2[—1Jcos 0,
IE inc ™M inc
EF | EM )
finc (ﬁ] cos@,  + [&)cos 0, s inc (n_z] cos@, + (ﬂ)cos 0, s
H H Hy H
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[gnoring the magnetic properties of the two media

Xnm| <1 then g4 = 1, = i the Fresnel Relations become:

TE Polarization TM Polarization
o | _ M COSE, —1,C080,, o | _—T,CO86, +ncosl,
E |~ |~
\ E," | mcosO,. +n,co80,,, | E, n,cos@, +ncosb,
________________________________________________
( TE (7 IM
E,. | 2n, cos B, . E,. | 2n, cos B, .
E |~ ™ |
| E," | mcosf, +n,cosb,,, | E,” ) nyc080, +mcost,,,
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Using Snell’s Law and various trigonometric identities

TE Polarization
E‘fﬂ :_Sm(ainc_etram)
E," | sin(6y + 6,y )

Efw _2c080,, 58,
SiN (6,5 + O )

25/01/2013
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TM Polarization

123

E," | tan(6,, +6,,)
Ej::“ _ 2cos @, esin @
ngu - SI (B,c + Bzns ) €OS (G — O )
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Use Snell’s Law " #,,sin6,_=n,_ sin6,_  toeliminate 6. :

frans

TE Polarization TM Polarization
( n \2 " 2 " 2
TE COS eir.-c - —= —Sil'l2 Binc ™ —| 2 COos einc + —= —Si.D2 91‘:16
Eo,m » \ 7 ) Eomﬂ — & ™
Ey ) (0 ) BN TV
cosf, +,|[ 2| —sin’ G, [—2] cosf, + [—ZJ —sin’ 6,
\ T / m m

mc

E," _ 2cos 6, EX ~
EjE - - EZM ; 2 2
- cosf, + (n_,_] —sin’ @ - [n_z) cosf. + (H—QJ —sin’ 0.
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= Now explore the physics associated with the Fresnel
Equations -the reflection and transmission coefficients.

@ Comparing results for TE vs. TM polarization for the

cases of external reflection (n1 < n2) and internal
reflection nl > n2)

Comment 1):
= When (E,;/E;,)< 0 - E,,;4 is 180° out-of-phase with E ;.
since the numerators of the original Fresnel Equations

for TE & TM polarization are (1—a 8 ) and (& — 5 )
respectively.
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Comment 2):
*For TM Polarization (only)- there exists an angle of incidence
where (E,.q /E;,.)= 0 - no reflected wave occurs at this angle for
TM polarization!

*This angle is known as Brewster’s angle 8 ; (also known as the
polarizing angle 6, - because an incident wave which is a
linear combination of TE and TM polarizations will have a
reflected wave which is 100% pure-TE polarized for an
incidence angle 6., . =60 5=60,!!).

‘Brewster’s angle 6 exists for both external (n; < n,) &
internal reflection (n; > n,) for TM polarization (only).
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Brewster's Angle &,/ the Polarizing Angle & for

Transverse Magnetic (TM) Polarization

—

From the numerator of Zos/Ert )= P B} -the originally-derived

expression for TM polarization- when this ratio = 0 at

Brewster’s angle 6 ; = polarizing angle 8 p - this occurs when

(¢ —B)=0,ie when a = 5 .

cos grrans . \/l - SinZ grram and SIlQH’ S LaWI SiIl emms — [ﬁ J Sin emc
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Brewster’s Angle &,/ the Polarizing Angle &, for
Transverse Magnetic (TM) Polarization

1 .
l——251n29

inc

= f°cos’ 6, = p’ (1 —sin” Q.nc) «— Solve for sin*

inc inc

2 1 2 - 2 - 2 1_,82 (1_'82)'82
1- "= —— sin“ @ | = [sin“ @ = =
ﬁ (IBZ ﬂ ] inc inc /ﬂz _ﬂ2 (1_ﬂ4)

== (=) 1+ )

sin” @, = (l_ﬂz)ﬂz = b |
" (1-p)(1+ ) 1+ P 1+
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: _ sid
Geometrically: [sin 8, = p _|_OPp. s1de
1+ g hypotenuse
el — 1 _ | adjacent
" 1+ g* hypotenuse
tan 6,,, = 3 _ e ade )i :
= adjacent n,

Thus, at an angle of incidence 8, = &;° =8, = Brewster’s angle / the polarizing angle for a

T'M polarized incident wave, where no reflected wave exists, we have:

inc inc n
tan@; =tand, '—*(n—z] for g =p, =p,
1

H inc
me SINOy n

From Snell’s Law: n,sin@, =n,sin@, . we also see that: tan ;" = L~ 2
cosfg m

. 2 inc __ inc _ _
or: msin@ =mn,cos@y for p=pu =pu,.

Tliyf‘mi/:%{? Snell’s Law we see that: cos@;° =sin6,, when 6, =65 =65° .
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So what'’s so interesting about this???

=0
Well: |cos 67° = sin(% —~ 9;”‘) =sin(§)cos G5 — yfé) sinf;° =sin6, | i.e. sin(% — Gg'c) =sinf,

.. When 6, =65 =6;° for an incident TM-polarized EM wave, we see that 6§, = r/2—65°
Thus: 6;°+6,, =7/2, ie. 03 =6, and 6,,

frans ns

are complimentary angles !!!

Comment 3):
For internal reflection (n; > n,) there exists a critical angle of

incidence past which no transmitted beam exists for either TE

or TM polarization. The critical angle does not depend on

polarization - it is actually dictated / defined by Snell’s Law:
=n,sinf > =n, sin(—) =n,| or:

- n . n
- mnc . 2 nc o~ -1 2
Sin ecritical — acrm'cal =S
2 n, m
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inc
For 6,.20. u> no transmitted beam exists — incident

beam is totally internally reflected.

For Gne > Coitcar» the transmitted wave is actually exponentially

damped - becomes a so-called:

Evanescent Wave:

oSty

- i[kzxsinemc(:—l]—th - -
vans (T51)=E, €% e ’ a=k,| -+ | sin*0 -1

ans ——y—4 J n2 nc

Wl e~

Exp. damping inz  Oscillatory along interface in x-direction
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Brewster’s angle for TE polarization:

0F =sin™ b \ A =sin" \/Z

T oaHs
H, ) \ H

(&, _(&\ A _(&\ _
sin@” = >gl< 'UI<E\/Z ie. A= >gl< ,u]/\

n _(& I _[&

A ) \H ) \H) \H )
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