

2443-22

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry

4 - 15 February 2013

A Photonic Transceiver for Quantum Applications in Space

V. Pruneri

ICFO

Spain

A Photonic Transceiver for Quantum Applications in Space

Valerio Pruneri Acknowledments: F. Steinlechner, M. Jofre, M. Mitchell

Lecture outline:

Faint pulse sources (FPS) and Entangled Photons Sources (EPS) for quantum communication in space

- Quantum cryptography: BB84 + decoy states
- Quantum transceiver for space
- State-of-the-art FPS sources
- LiNbO₃ based FPS
- SOA-based FPS
- Quantum random number generators
- State-of-the-art EPS sources
- High-brightness crossed-crystal EPS
- Polarization-flipped linear round-trip EPS

Quantum cryptography

Not just QKD...

- Quantum computation.
- Quantum digital signature.
- Quantum auctions.
- Quantum gaming.
- Quantum scheduling and optimization.
- Quantum metrology.
- Quantum imaging.

	Estimated market size1							
Quantum encryption	\$30m by 2008							
	\$300m by 2015 (pessimistic) \$3bn by 2015 (assuming annual doubling, approx adoption 30,000 companies).)							
Quantum auctions	\$100m through to 2010							
	Estimated annual savings from QIP							
Scheduling and optimisation	>\$2bn (conservative estimate)							
	Market sizes of areas which QIP can impact ²							
Quantum computing (QC)								
- "Small" quantum simulations	\$1.15bn - the US market for piezoelectric materials							
- Quantum modelling	\$540m - world market for computational flow dynamics software							
- "Large" quantum simulations	Sell 3 quantum computers at \$100m to \$10bn eac Expected market: military and national research institutes.							
Spin-offs from QC developments								
- Spintronics	>\$100bn - estimated market value of spintronics							
- MRI	\$1.2bn - estimated market value of MRI contrast- enhancers							
Quantum gaming	\$18bn - current market value of online garning							
Quantum metrology								
- GPS	\$21.5bn - estimated 2008 market value for GPS technology							
- Precision engineering	\$5.6bn - estimated 2009 market value for photonic components							
- Optical storage	\$30.7bn - estimated 2010 market value for optical data storage							
- Biomedical imaging	\$2.6bn - current market value for ophthalmic diagnostics							

¹ All figures are in US\$

² From estimated market sizes of comparable conventional analogues

Why quantum sources in space?

- Optical fiber losses and photon-detector technology limits QC on Earth to 200 km.
- These problems are less severe in space (line-of-sight limitation).

Technology	Current properties	Future Properties (2020)						
Free-space (satellite)	 No commercial suppliers Distance limit 20km Limited to line of sight & good weather conditions Point-to-point only 	 Global QKD network Mobile nodes possible High fixed cost (satellite required) Comparable marginal cost to fibre 						
Fibre	 3 commercial suppliers Distance limit 150km Requires fibre link Point-to-point only 	 Long-distance network capabilities, distance limited by fibre connections Lower fixed costs, hence lower barriers to entry by competitors 						

To achieve

- New possibilities and unprecedented versatility in communications.
- Quantum Mechanics over >1000 km.

State-of-the-art: Free-space QKD

M. Aspelmeyer et al., **Science** 301, 621-623 (2003)

K. Resch et al.,Opt. Exp. 13, 202-209 (2005)

R. Ursin et al., **Nature Physics** 3, 481-486 (2007)

Milestone Satellite link

P. Villoresi et al., **NJP** 10, 033038 (2008)

T. Schmitt-Manderbach et al., **Phys. Rev. Lett.** 98, 010504 (2007)

S. Nauerth et al., **Proc. SPIE** 8518 (2012)

EQT - Quantum Transceiver for Space

European Space Agency Artes 5 ESTEC 21460/08/NL/IA

Extreme performance requirements

General requirements

- Total mass ≤ 3 kg (goal ≤ 2 kg)
- Total size ≤ 200x150x100 mm³ (goal ≤ 150x150x100 mm³)
- Total power consumption ≤ 15 W (peak) (goal ≤ 10 W peak)

Optical requirements

- Optical bandwidth ≤ 3 nm (goal 1nm)
- Back to back detected coincidences rate > 10⁵ (goal > 10⁶)
- Visibility > 95 % (in 0/90 and +45/-45 basis)
- QBER < 2.5 % (goal < 1 %)
- Detection probability > 40 % (goal > 50 %)
- Weak pulses repetition rate > 10 MHz (goal > 100 MHz)
- Dark counts < 100 counts/sec (goal < 500 counts/sec)
- Timing resolution < 1nsec (goal < 0.5 nsec)

Environmental constraints

- Operational temperature range -35/+60 deg C
- Storage temperature range -50/+75 deg C
- Operational relative humidity range 5-85 %
- Storage relative humidity range 5-95 %
- Vacuum environment < 10⁻⁶ mbar
- Vibration Resistant
- Radiations
 - (Gamma) Total ionisation dose up to 150 krad (Si)
 - Displacement damage: cumulative fluence up to 2x10¹⁰ cm⁻² (65 MeV protons)
 - Single Event Transient up to 60 MeV/mg/cm⁻² (heavy ions)

Collaboration requiring combined knowledge

Optical Tolerances

Thermomechanics

Electronics

Mechanical Capabilities

+ Thomas Jennewein (IQC)

QTx space-proof prototype: potential layout

Quantum key distribution (QKD) with polarization of single photon – BB84

Bennet Brassard 84 (BB84)

security is based on fundamental principles of physics (single photon)

Heisenberg principle + no-cloning theorem

= unconditional security

Eavesdropper can be detected via Errors introduced:

$$\mathcal{P}_{error} = \mathcal{P}_{Eve\ has\ wrong\ basis} \times \mathcal{P}_{Bob\ gets\ wrong\ result}$$

$$= 50\% \times 50\%,$$

$$= 25\%.$$

Faint Pulse Sources (FPS) can be used to approximate truly single-photon source

true- single-photon sources hard to realize... more practical choice is an attenuated laser-pulse that on average it emits < 1 photon per pulse.

|Faintpulse
$$\rangle$$
 = $0.8|0 - \text{photons }\rangle + 0.1|1 - \text{photons }\rangle + 0.01|2 - \text{photons }\rangle...$

Multiple photons open door to eavesdropping. In practical QKD systems, the security can be improved using a **decoy-state protocol**.

Decoy state protocol

- Principle
 - Alice sends pulses containing N photons, N chosen in {1/2, 1/8,0}
 (example), each pulse can be either signal or decoy state.
 - Bob announces his detection events.
 - Alice broadcasts which signals were indeed signals or decoy states.
- Any eavesdropper suppressing photons (photon number splitting attack) will be detected by computing the gain (# of detection events/# of signals sent).

comparable QKD security and performance with less complexity than single photon sources.

Key generation rate

QKD experiments, interested in maximizing:

- The secure key generation rate.
- The tolerable error rate (QBER).
- The secure distance.

Channel:

- In optical fibers, loss can be derived from the loss coefficient (α) and the length of the fiber (L).
- · Channel transmittance:

$$t_{AB} = 10^{-\frac{\alpha L}{10}}$$

Secure key rate decreases with loss

Gottesman-Lo-Lütkenhaus-Preskill (GLLP) security proof

State-of-the-art: FPS

Polarization encoded sources

C. H. Bennett, et al.,J. Crypt. 5, 3-28 (1992).

R. J. Hughes, et al., **New J. Phys.** 4, 43 (2002).

- Common limitations of current implementations:
 - Information leackage:
 - Phase coherence.
 - Different qubits prepared
 by different light sources.

H. Weier, et al.,

Fortschr. Phys. 54, 840-845 (2006).

- The highest secure key rates reported to date:
 - Optical fiber: 1.02 Mb/s (over 20 km) and 14.1 b/s (over 200 km).
 - Free-space: 50 Kb/s (over 480 m) and 12.8 Kb/s (over 144 km).

Integrated FPS

- Single laser diode followed by integrated (waveguide) amplitude and polarization LiNbO₃ modulators (having):
 - Indistinguishability.
 - High bit rates (100Mb/s).
 - 850nm (free space).

- Space-qualified.
- Low power consumption (5W).
- High integration.

Allows to install the source on a low orbit satellite

LiNbO₃ based FPS

M. Jofre, et al., "100 MHz Amplitude and Polarization Modulated Optical Source for Free-Space Quantum Key Distribution at 850 nm", J. Lightwave Tech., **28**, 2572-2578 (2010).

de Ciències Fotòniques

FPS generated states

Dissociate pulse generation from polarization and intensity settings (external modulation).

At least 4 polarization (BB84) with 3 intensities (decoy-state).

No phase coherence between successive pulses (direct laser

modulation).

Electro-optics

Specified LiNbO3 modulators:

No termination resistor:

- 500 MHz modulation bandwidth.
- < 2V driving voltage.

Polarization modulator (PM) connectorization.

Indistinguishability in polarization

- Optical pulses in a BB84+decoy-state protocol should:
 - Differ in polarization and intensity.
 - Indistinguishable in other characteristics (temporal shape and frequency spectrum).

Indistinguishability in intensity

- Normalized to the total energy for comparison.
- Polarization statistical similarity is more important (than intensity).

High degree of similarity.

Minimal distortion.

PMD compensation

Impairment in PM entering at 45°: LiNbO₃ birefringence causes PMD.

$$\Delta \theta = \Delta \tau 2\pi \Delta \nu$$

Intensity scan produces 0.45nm sweep.

 $\Delta\lambda \sim \Delta I$

9.7% QBER due to PMD.1.4% QBER with compensated PMD.

de Ciències Fotòniques

Compact FPS

FPS-4SOA: based on integrated semiconductor optical amplifiers (SOAs).

- Single laser diode followed by integrated SOAs (having):
 - Indistinguishability.
 - High PER (>20 dB).
 - High bit rates (100Mb/s).
 - 850nm (free space).

- Space-qualified.
- Low power consumption (5W).
- High integration.

SOA based FPS

M. Jofre, et al., "Fast optical source for quantum key distribution based on semiconductor optical amplifiers" Opt. Exp., 19, 3825-3834 (2011).

de Ciències Fotòniques

Generated states

Continuous periodic sequence

-	1	2	3	4	5	6	7	8	9	10	11	12
SOA/Polarization	1	2	3	4	1	2	3	4	1	2	3	4
Intensity	3	2	1	3	2	1	3	2	1	3	2	1

Facilitates QKD performance evaluation.

High degree of similarity.

Removal of 10⁻³ bits per pulse

FPS QKD results

- 3.64 Mbps with 1.14% QBER for 6dB attenuation.
- 187 bps for 35 dB attenuation.

QRNG

Example: single photon quantum indeterminacy in 50/50 beam splitter.

State-of-the-art: QRNG

T. Jennewein, et al.,

Re. Sc. Inst. 71, 1675 (2000).

B. Qi, et al.,

Opt. Lett. 35, 312-314 (2010).

C. Gabriel, et al.,

Nat. Photonics 4, 711-715 (2010).

ST M. Fürst, et al.,

ürst, et al.,

Opt. Exp. 18, 1302913037 (2010).

O. Kwon, et al., **App. Opt.** 48, 1774-1778 (2009).

AG

BBO

S. Pironio, et al.,

Nature 464, 1021-1024 (2010).

Low bit rate
High complexity

Future demands for secure communications >100 Gbps

QRNG device

- Highly integrated.
- Practical and robust.
- Long operational life time.

- True random numbers from amplified quantum vacuum (having):
 - Vacuum fluctuations.
 - Electrical amplification.
 - Macroscopic signal level (mW).
- High bit rates (>1 Gbps).
- 100 MHz pulse rate.
- 11 bits per pulse.

Pulsed LD based QRNG

M. Jofre, et al. "True random numbers from amplified quantum vacuum", Opt. Exp., 19, 20665-20672 (2011).

Laser physics

Direct LD modulation

Change due to a single spontaneous emission.

Intensity the same.
Random phase.

LD is a cavity.

Trade off. The lower the DC current bias:

- The more phase variance.
- Time-scale dynamics slower.

The physics of the process can support >100 Gbps.

Interference distribution

90.22% interference visibility.

Broadening due to random phase.

Statistical testing

Autocorrelation evaluates periodicity.

No periodicity (Delta-function behaviour).

Entropy evaluates uncertainty.

11.1 bits per pulse (classical noise removed).

Improved, integrated QRNG

5.825 GHz pulsed LD

X 10 random bits per pulse = 58 Gbits/s

Entangled photons for Quantum Cryptography and

QKD allows global unconditionally secure information transfer

..... Quantum enhanced metrology

...push limits of clock synchronization and ranging

Quantum cryptography with entangled photons

Entanglement: Distribute random but perfectly correlated sequence -> cryptographic key

communication channel

Eavesdropper detectable due to errors when wrong basis is chosen

State-of-the-art: EPS

Type II-Sagnac			
nicro-optical (bulk)	Exp-99.5%	Exp-2.7x10 ⁶	Exp-0.3nm
ype I-Linear micro- optical (bulk) cavity	Exp-98.4%	Exp-2x10 ³	Exp-15nm
Type II-Linear waveguide	Exp-79%	Exp-3x10 ⁶	Exp-1nm
`	ype I-Linear micro- ptical (bulk) cavity Type II-Linear waveguide	ype I-Linear micro- Exp-98.4% ptical (bulk) cavity Type II-Linear Exp-79%	ype I-Linear micro- ptical (bulk) cavity Type II-Linear Exp-79% Exp-3x10 ⁶ waveguide

State-of-the-art pair sources not wellsuited for harsh environments

(-) interferometric stabilization

(-) bulky lasers

(-) low efficiency

EQUO: Entangled photon source for QC

Main requirements:

- -high brightness (pairs/s)
- -high entanglement quality (visibility)
- -suitable for space transmission
- -robust, compact design

European Space Agency Contract #:22542/09/NL/SFe

Optical requirements

	Requirement	Goal	
Wavelength	750 – 850 nm		
Type of entanglement	Polarization		
Pumping scheme	405 nm LD		
Optical bandwidth	≤10 nm	≤3 nm	
(Back-to-back) detected coincidence rate	> 10 ⁷ pairs/s	> 10 ⁹ pairs/s	
Visibility	> 90 % in 0°/90° and +45°/-45° basis	> 95 % in 0°/90° and +45°/- 45° basis	
Spectral brigthness	> 40 000 pairs/s/mW/nm	>10 ⁷ pairs/s/mW/nm	

Spontaneous Parametric Down Conversion (SPDC)

$$P_{i} = \epsilon_{0}(\chi_{ij}^{(1)}E_{j} + \chi_{ijk}^{(2)}E_{j}E_{k} + \chi_{ijkl}^{(3)}E_{j}E_{k}E_{l} + \dots)$$

Spontaneous

Parametric

Downconversion

Momentum Conservation

Energy conservation

750-850 nm (Si detectors, link loss-budget, pump)

Periodic Poling: Efficient SPDC

Long crystals + collinear interaction + Large nonlinear coefficient + 405-nm LD pump + 750-850 nm range + ...

→quasi-phase matching (QPM) : periodic poling

$$\vec{k}_p(\omega_p, n_p(\omega_p, T)) = \vec{k}_s(\omega_s, n_s(\omega_s, T)) + \vec{k}_i(\omega_i, n_i(\omega_i, T)) + \frac{2\pi}{\Lambda(\vec{r}, T)} \vec{e}$$

Periodic Poling: Efficient SPDC

type	Crystal	deff	Poling	Pump
type	Crystal	den		Wavelength
0	PPKTP	12 pm/V	3.35 µm (1st order)	405 nm
0	Mg:PPLN	20 pm/V	9 µm (9th order)	405 nm
II	PPKTP	2.5 pm/V	10 µm (1st order)	405 nm

- +Photorefractive effect
- +Gray-tracking
- +Multiphoton absorption

Optimized focus-conditions for 20-mm ppKTP

pair-rate favours small waists

pair-heraling favours larger waists

Trade-off between pair-rate and heralding-efficiency

Approach: Spontaneous parametric down-conversion in crossed crystals

YVO4 compensation-crystal flattens phase-map

$$|\Phi (\varphi)\rangle = |H_{\lambda s}H_{\lambda_i}\rangle + e^{\varphi(\lambda)}|V_{\lambda_s}V_{\lambda_i}\rangle$$

Fotòniques

Robust, compact EPS breadboard

Spectral SPDC properties tailored to atmospheric transmission

CWL & FWHM SPDC

Pump: 405.4 nm CW, ppKTP: 3.425 μ m pp, Length: 20 mm

degeneracy increases with temperature

bandwidth decreases with temperature

Tunable around optimized wavelenght: 810 nm

Brightness SPDC

Brightness peaks at degeneracy ~20 Mcp/mW

Spectral Brightness remains constant ~2 Mcp/nm/mW

EQUO source exhibits unprecedented performance:

High state-fidelity: 98%

Optical bandwidth	2.3 nm
Visibility	99.5 / 99.5 % H/V 95.7 / 97.6 % D/A
Detected spectral brightness	278 kcps/mW/nm
Normalized detection rate	640 kcps/mW
Heralding efficiency	18 %

pump power: $25 \mu W$

no correction for losses!

Flux generated exceeds saturation level of commercial SPADs

full pump power 40mW

coincidences:
$$R_c > 20 \text{ Mcps}$$

$$2 \times \frac{R_c}{0.18} \approx \text{ total singles: } R_s + R_i > 200 \text{ Mcps}$$

SPAD saturation: ~10 Mcps

60 SPADs

(at 33% saturation level)

EQUO:robust, compact EPS breadboard based on space-proofable components

Main features EPS:

-high brightness(pairs/pump power).

-high entanglement quality (visibility).

-suitable for space transmission

European Space Agency Contract #:22542/09/NL/SFe

Related literature

Quantum Cryptography/Communication review articles:

N. Gisin et al., Quantum Cryptography http://arxiv.org/abs/quant-ph/0101098

N. Gisin et al., Quantum Communication http://arxiv.org/abs/quant-ph/0703255

P. Kumar et al., Photonic Technologies for Quantum Information

http://www.stanford.edu/group/nqp/jv_files/papers/qucomp-review.pdf

ICFO examples for sources for quantum optics in free-space

M. Jofre et al. Opt. Express, Vol. 19, 3825-3834 (2011)

F. Steinlechner et al. Opt. Express 20, 9640-9649 (2012)

Books:

Fundamentals of photonics,
Bahaa E. A. Saleh, Malvin Carl Teich
The physics of quantum information
Dirk Bouwmeester, Artur K. Ekert, Anton Zeilinger
A Guide to Experiments in Quantum Optics
Hans-A. Bachor, Timothy C. Ralph

