

2443-19

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry

4 - 15 February 2013

Biomedical applications (part 1+2)

K. Svanberg

Lund University Hospital

Sweden

Biomedical Applications

Biophotonics – Bridging the gap between medicine & physics

Katarina Svanberg

Department of Oncology, Lund University

Centre for Electromagnetic and Optical Research

South China Normal University, Canton, China

Networking and science walk together

Take always advantage of meeting people

Listen to people – learn from them (provided they have something important to teach you)

Be aware of your own competence – in particular you women

Work for improving the conditions for all of us

International Graduate summer school - Biophotonics' 03, 05, 07, 09, 11 and 13

SPIE - The International Society for Optics and Photonics

- 195 Student Chapters, 27 countries
- 2,400 students involved in chapters
- 27% of SPIE Members are students (4,300)

The SPIE and the OSA student chapter at Osaka University together with the two Presidents Katarina Svanberg and Chris Dainty. Also seen are Elisabeth Rogan, CEO of OSA and Satoshi Kawata, the senior leader of the SPIE chapter

Student Chapters – the SPIE version

- 5,200 student members
- 180 student chapters in 36 countries: activity grants, training & networking
- 44 student events/training at conferences in 2012
- \$350,000 is scholarships awarded annually
- Discounted memberships for students & early career
- Travel for 160 students to attend leadership training annually

Laura Mihai – the SPIE student chapter leader, Bucharest University, Romania

Mihai Pascu and Clementina Timus from the Institute of Laser, Plasma & Radiation Physics,
Bucharest University
together with Katarina Svanberg

Accidental meetings may make the whole diffence

Sune Svanberg at his desk as a very young scientist

Ragnhildnew born Little Sister

Soon opening her eyes to the world We as scientists can help to make the world a little bit better place to live for all of us!

Biological objects + light = BioPhotonics

Light-tissue interaction

Light interaction with biological tissue The main absorbers

Log₁₀ (Absorption coefficient)

ICTP representative – Benjamin Anderson from Ghana together with Mikkel Brydegaard; Photo with an IR filter

We started
Biomedical Optical
Research in 1982

1st clinical PDT session in Scandinavia was performed by us in 1987

Lund University Medical Laser Centre was established in 1991

PDT treatment at the
Lund University Hospital
(Oncology Department)
with a frequency doubled
Nd:YAG laser
pumping a tunable
dye laser

635 nm

532 nm

Clinically adopted diode laser

CeramOptec/BioLitec

Lund Biophotonics Group

Stefan Andersson-Engels Katarina Svanberg Sune Svanberg

Dmitry Khopyar Märta Lewander Erik Alerstam Johan Axelsson Niels Bendsøe

Haichun Liu Hayian Xie Emilie Krite Svanberg Pontus Svenmarker Tomas Svensson

Gabriel Somesfalean Zuguang Guan Jonas Johansson Peter Andersen Can Xu Mikkel Brydegaard

Lund University

Medical Laser Centre

For the future, the network's overall goal remains unchanged. Europe holds a strong position in biophotonics research. We will continue to build on this world-class resource in order to address the 'Grand Challenge' of sustainable health care. «

Cross disciplinarity is the key

Biolitec & Friedrich Schiller University, Jena, Gernany

Oncology
Physics
Dermatology
Cell biology
Industry

Universities and hospitals
where we performed
joint clinical and preclinical

work

•Radiumhospitalet, Oslo, Norway

•Karolinska Hospital, Stockholm

•Latvian Oncology Center, Riga

•Vilnius University, Lithuania

•London Medical College, GB

•Lübeck University, Germany

•St Pieter Hospital, Leuven, Belgium

•Friedrich Schiller University, Jena, Germany

•Padova University, Italy

•Porto Univeristy, Portugal

•National Technical University, Athens, Greece

•Cheik Ante Diop Hospital, Dakar, Senegal

Joint clinical/scientific collaboration at Latvia Oncology Centre, Riga

RIGA

Alexander Derjabo, Janis Kapostins Janis Spigulis

LUND

Katarina Svanberg Niels Bendsoe, Thomas Johansson, Marcelo Soto Thomson, Sune Svanberg

The global perspective

African-Lund Workshop visiting the Oncology Department

FROM LEFT TO RIGHT: Malick Diop, Sara Pålsson, Ababakar Abdalla, Kenneth Kaduki, Almamy Konte, K. Dzinavatonga, Jaidane Nejmedinne, Ahmadou Wague, Sune Svanberg, N. Ndolovu, M. Mathuthu, Katarina Svanberg and Niels Bendsoe.

Senegal, Kenya, Zimbabwe, Ghana, Sudan, Tunisia, Equador

Discussing treatment possibilities

The African wife cooking food for her husband at the Department of Dermatology, Dakar, Senegal

Wives never give up to support their husbands!

Photodynamic Therapy at the Arsitide le Dantec University Hospital Dakar, Senegal

Cancer in Europe

4-5 new diagnosed cancers/1000 persons each year – 1 person every 15 minutes in Sweden (9 milj)

The cancer incidence varies from region to region Highest incidence in the urban areas
The highest incidence of breast- and prostate cancer
in big cities

Cancer In the US
Approximately 1.2 million people/year are diagnosed with cancer.

Approximately 30 % of all deaths in the Western World are caused by cancer.

Only cardiovascular disease causes more deaths.

Epidemiology The cancer incidence is increasing

Urbansation fast food

obesity

pollution

family structure

Social habits **SMOKING**

giving birth to children at later age

anticonceptual treatment

less breast feeding

Life aspect AGE

Death rates in Japan for various diseases

Approximately 30 % of all deaths in the Western World are caused by cancer.

Only cardiovascular disease causes more deaths.

The ten most common malignancies world wide causing cancer related deaths

M en Women

Lung Breast

Prostate Cervix

Large intestine Large intestine

Stomach

Mouth & throut Lung

Liver Ovary

Oesophagus Mouth & throut

Urinary bladder Uterus

Lymphoma Lymphoma

Leukemia Leukemia

Skin cancer is an increasing problem with increasing costs!

Lund University

Modified from Ringborg *et al.*

Medical Laser Centre

Katarina Svanberg

A benign tumour
(an adenoma)
clearly separated from the
normal non-affected tissue
below the tumour

The "line" in between is composed of collagen

Never a cross over of tumour cells through the border line

Benign and malignant neoplasias

Benign lesion is:

- not life-threatening
- •is slow growing
- •will not disseminate (no metastasis)
- •is amenable to remove with full cure for the patient

Malignant lesion has the potentials of:

- rapid growth
- •invasion
- destruction of adjacent structures
- dissemination (metastasis)
- •killing the patient!

Modified from Robbins *et al.*

The goal is to find the cancer early as this improves the prognosis for the patient

Modified from G.R. Weiss

5-year survival for different staging in lung cancer

(histopathologically non-small lung cancer)

Stage I		T1N0M0		T2N0M0
		60%		38%
Stage II		T1N1M0		T2N1M0
		34%		24%
Stage IIIa		T3N0M0 22%	T3N1M0 9%	T1-3N2M0 13%
Stage IIIb		T4N0-2,M0		T1-4N3M0
		7%		3%
Stage IV	M1			
	1%			

Optical tissue diagnostics

Spectroscopic techniques:

Fluorescence

Reflectance

Elastic Scattering

Raman

Collaboration with Photonics Center, Jena

Fluorescence excitation & emission Autofluorescence

Excitation and emission spectra for endogenous and exogenous fluorophores

Choice of wavelength

Fluorescence detection

UV or near-UV excitation light (337 - 405 nm)

Shallow penetration – premalignant or carcinoma *in situ* detection

Upwelling fluorescence not "diluted" from deeper tissue

Photodynamic therapy
"Red" light (635 ~ 750 nm)

-to match the absorption peak of the photosensitizers-to obtain deep tissue penetration(TUMOUR THERAPY)

Different geometries

Point measurements:

- All colours
- In one single point

Imaging measurements

- One or few colours
- Over the whole area

Tissue fluorophores/chromophores

Endogenous Tissue Fluorophores

Extracellular

<u>Intracellular</u>

Collagens

Elastin

mucin

NADH/NAD+

Oxidised flavins

Keratin

Melanin

Porphyrins

Lipofucin

Vitamin B derivatives

Cholosterols

Aromatic amino acids

Example of clinical applications

Endoscopic diagnostics

& treatment

Bronchus

Surface (direct) detection & treatment

Cervix

Oesophagus

ENT

Large intestine - colon

Lund University

Katarina Svanberg

Skin cancer – related costs

Approximately 150 000 benign naevi are excised yearly to a cost of 30 000 000 Euro in Sweden 49/50 persons are operated "unnescessarily"

Total costs for skin cancer treatment each year:
125 000 000 Euro – Sweden
1 000 000 000 Euro - Germany

Better diagnostics/treatment needed

Lund University

Challenges of today in the clinic

Field cancerisation – how to localise areas to treat – target decision Katarina Svanberg

Challenges of today in the clinic

Tumour borders?

Where are the tumour borders?

Treatment target definition

Interactively defined treatment borders

By fluorescence revealed additional tumour area

Lund University

Clinically judged tumour borders

Photodynamic Therapy with interactive target definition

Fluorescence measurements tumour border detection

Lund University

Multicolour Fluorescence Imaging

⁵Red — Yellow Blue

Benign – Malignant?

A basal cell carcinoma (left) as seen through a fluorescence imaging system (right) provides a clear delineation of the lesion.

Benign naevus

Traditional diagnosis versus optical characterisation

Punch biopsy

Optical detection

Equipment developed by Mikkel Brydegaard et al.

LED based multiple exctation fluorescence and reflectance sensor

Monitoring system for multiple excitation fluorescence and reflectance monitoring

Efforts in improving women health Cervical tissue detection to prevent development of cancer

Lund University

Optical Tissue Diagnostics of cervical precancer & cancer

111 patients included

Lithuanian Oncology Centre

Out patient clinics

Vilnius University Hospital – The Gynaecology Department

The transition zone – site for 95% of all uterine cervical cancer

Cervical canal

Lund University

Optical Tissue Diagnostics in the Uterine Cervical Area

Separate inflammation from neoplasia

Laser-induced **autofluorescence** data – cervicitis/precancer

Exc. 337 nm

Real-time fluorescence imaging in conjunction with colposcopy

Treatment considerations!

Collaboration with STI Inc., Honolulu, USA

Barret's oesophagus – guided biopsy sampling in the metaplastic mucosa

Picture from Axcan Pharma Inc.

Clinical measurements at Karolinska Hospital, Stockholm

The probe fibre in contact with a polyp

Non-neoplastic: Neoplastic:

Separate metaplasia/hyperplasia from neoplasia

Large intestine - colon

What is the interpretation if the clinical appearance is

Various kinds of polyps

Neoplastic

Non-neoplastic

Adenomatous polyps
Villous adenomas
(in particular flat sessile lesions - often overseen in colonoscopy)

Hyperplastic or metaplastic

10% Carcinoma in situ in these

PDT treatment

Multiple polyp resection Tumour bed illumination

Visualise precancer (dysplasia) & non-invasive tumours

Ca *in situ* (Tis)

Urinary bladder tumour detection

Endoscopic view

Fluorescence image

Medical Laser Centre

Herbert Stepp et al.

School by Hon Forms, Barbaro Homerost, Notehold Savingartina and residual literals

Photodynamic Therapy with ALA

A success development of a photonics-related technique introduced in the clinic

Fujimoto et al.

Ophthalmology Vessels Skin

In Vivo Ultrahigh Resolution OCT versus Histology

Gass J.D.M., 1997

Photodynamic therapy Three crucial components in PDT

Sensitiser

Tumour Destruction

Primary effect (~days) – Direct tumour cell toxicity Secondary effect (~ weeks) – Vascular damage, Apoptosis

Lund University

Various PDT-modes for light delivery

Superficial Tumour bed Endoscopical Interstitial

Tumour localising agents - photosensitisers (PDT) tumour markers (LIF)

	RED Absorption Peak
Haematoporphyrin derivative (HpD), (Photofrin)	630 nm
δ-aminolevulinic acid (ALA)	635 nm
Mesotetrahydroxyphenychlorin (mTHPC), (Foscan)	652 nm
Tin Etiopurpurin (Pyrlytin)	660 nm
Benzoporphyrin, (Verteporfin)	690 nm
Phthalocyanins	720 nm
Lutetium texaphyrin (Lutrin)	732 nm
Bacteriochlorophyll (Tookad)	760 nm

Lund University

Why selectivity?

Affluent blood flow to the tumour – insufficient blood flow from the tumour (trapping)

Leaky blood vessels in the tumour

Lower pH in tumour

For ALA an enzymatic response

The tumour destruction process

The sensitizer molecule gains excess energi by light excitation

The excess energi

Tissue triplet oxygen is transformed to cytotoxic singlet oxygen

Lund University

Type I and Type II reactions in PDT

Photodynamic Therapy

PDT characteristics:

- •Tumour selectivity
- •Can be repeated
- No accumulated toxicity
- •Fast healing
- •Minimal scaring
- Organ function is retained

Systemically given it

causes skin sensitisation

Nodular basal cell carcinoma In Lund we have PDT-treated 2500 skin malignancies & performed Phase III clinical trials.

Katarina Svanberg

Indication for PDT

Primary and/or Recurrent skin malignancies

- •Large lesion >4 cm
- •Multiple lesions
- •Sensitive location
 Face
 Pretibial etc
- •Underlying cartilage
 Ear
 Nose
- Elderly people
- Excellent cosmetic outcome
- Short healing time
- •Comparable respons to conventional techniques

What are the indications for PDT of skin malignancies?

e.g.,

•Multiple skin lesions

Large skin lesions(diameter 5 cm or more)

•Lesions in sensitive areas

Surgical scar

Superficial basal cell carcinoma

Photodynamic therapy (PDT)

2. Build-up of Protoporphyrin IX

From L. O. Svaasand

ALA to Protoporphyrin IX in several enzymatically generated steps

ALA PDT Treatment of a nodular Basal Cell Carcinoma – one of our first patients

Histopathology showed compete response; some elastosis

Cutaneous T-cell lymphoma

ALA-PDT of a squamous cell carcinoma

Prior to ALA-PDT

3 months post
ALA-PDT

W

How to overcome the limited penetration with superficial illumination?

Tissue penetration

Interstitial PDT

Up to cm:s

Up to mm:s

Lund University

Medical Laser Centre

Optical fibres inserted into the tumour mass

Motivation for Interstitial PDT

Johansson et al. JBO (2006) Wang et al. Br. J. Dermatol. (2001) Stefan Andersson-Engels

Challenging indication for PDT

- Prostate recurrent cancer post XRT
- •The alternative is hormone therapy
- M ore toxic than anticipated

The conversion of ALA to Protoporphyrin

Fiber-based laser therapy system for interstitial PDT

The instrument:

- 18 combined treatment/monitoring fibres
- Therapeutic light: 652 nm for mTHPC
- On-line treatment control based on therapeutic light transmission
- Applied to prostate cancer therapy

IDOSE – Flow chart

Pre-Treatment Planning

Stefan Andersson-Engels Johan Axelsson Johansson et al. Med. Phys. (2008) Axelsson, Swartling et al. (in press)

The treatment geometry

- Optical fibres are **positioned to optimize treatment** of prostate gland with minimal effect on nearby organs at risk
- 18 fibres allow low-resolution **tomographic reconstruction** of the important treatment parameters

Dose Volume Histogram

Stefan Andersson-Engels Johan Axelsson

Results - dosimetry

patient 1 patient 2 Percentage of organ above threshold dose (%) patient 3 80 patient 4 70 60 50 30 20 10 urethra u sphincter I sphincter prostate rectum

Laser illumination time (min)

Tissue	
type	Acc. limit
prostate	>95
urethra	<90
rectum	<80
u	
sphincter	<80
I sphincter	<50

3 D mapping of the fluorescence of the sensitiser Foscan in the treated prostate gland

Correlation in between sensitiser content & histopathological outcome

Challenging indication for PDT

Barrets Oesophagus

- •A precancerous condition for adenocarcinoma
- Caused by GERD
- •The alternative is mechanical mucosectomy

Challenging indication for PDT

Pancreas cancer

- Lund University
- Medical Laser Centre

- Poor prognosis
- Late diagnosis
- •10-15% are operable at diagnose
- To shrink the tumour
- •To make the tumour operable

Tissue Absorption

Absorption of light in tissue

Sinusitis diagnostic by laser-spectroscopic measurement of oxygen and water vapour

Gas in Scattering Media Absorption Spectroscopy (GASMAS) for paranasal sinus detection

Paranasal sinuses

Sinusitis: Inflammation in the paranasal sinuses

Common disease

No easy diagnostic tool available

Obstruction & blockage

Diagnostic methods

Computer tomography

Endoscopy

Frontal Sinus

Maxillary Sinus

Lewander et al.

Clinical trial on 40 patients referred to CT scanning

Sinusitis diagnostic by laser-spectroscopic measurement of oxygen and water vapour

GASMAS correlation to CT scan results Lewander et al. 2009

Pediatrics and Neonatology

Clinical challenges ~24 h non-invasive surveillance Spectroscopic techniques

Spectroscopic techniques \sim as compared to conventional techniques for surveillance

Back ground in detection of sinusitis with GASMAS Gas in Scattering Media Absorption Spectroscopy

Preterm born babies

- Born before the 37th week of pregnancy
- 8-10% of all pregnancies in the US
- Not fully developed organs
- -in particular the lungs
- Low weight

Lund University

Medical Laser Centre

Preterm born babies

Respiratory distress syndrome (RDS)

- a breathing disorder
- more often if born ≥6 weeks early
- 50% week 26-28; 25% week 30-31
- lack of alveoli liquid coating surfactant
- collapse of the lung alveoli
- insufficient oxygen saturation
- damage to organs
 - in particular the brain

Preterm born babies

Respiratory distress syndrome (RDS)

Conventional surveillance of the babies:

Blood sampling for oxygen gas analysis

X-ray-based investigations (CT)

Ultra sound image taken over the stomach area with the intestines (2 weeks old non-preterm baby)

Science certainly brings people together!

