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SOA&SLED vs Laser diodes structures

Active waveguide channel

|
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The structure is very similar to the laser diode structure

just that the feedback should be eliminated in order to have:
-Flat gain amplification

-High gain

The SOA gain can be computed from the T,, element of the transmission
matrix of the Fabry Perot cavity

(1= Rehl = Ryis
| e The gain is not constant

|T11|2= f}'f-'plc:J:' - - 172
|+ R Ry = 2R Ry ) "G cosi2BL) with wavelength!

(y = Gyl = expl[Fgler) = g |L] G, single pass gain



Gain and spectral ripple

Devices with not ideal ARC present an undulation in the gain and
spectral emission that for the SOA is characterized by the Gain
Ripple (G,) as the ratio between maximum and minimum gain

defining .., = +f K,

we can define a relation between the residual unwanted reflectivity

o (1 4T ﬁgr::..)E
TR = 1 =/ By Hal,

Rgeo @nd the gain ripple G,

In order to have a good SOA
gain (30dB)is necessary to have
a very low residual reflectivity
(10-4) for a 1dB ripple!!!

Similarly for the SLED spectrum.
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How to reduce the modal reflectivity

What count in the previous relation is the “modal” reflectivity ;

2

the part of the reflected power at the air
interface that is coupled back into the 7 =
backward propagating waveguide mode.

mc

gj.E. (X) E, . (x)dx

2

[E, (o2 ax

The most traditional method is to deposit on the cleaved facet an
antireflection coating (ARC)

In practice a good 1
ARC is very difficult to
realize on the laser
facet and usually only
one or two dielectric
layers can be
deposited with good S ,

reliability. T R T

Figure 4.13. Power reflectivity for the untilted & pwe QD structure with double

AR coating (ny = 1.98 and nwe = 1.58, d) = 01185 g, da = 0,144 g our 2D sim-

ulation results (blue curve), NetTest 1D results (red curve), NetTest experimental
results (grey curve)
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Waveguide tilt

The other possibility is the waveguide tilt

0 =5 degrees, uncoated

A w=2um i
w=3um

w=4.5um
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Simple and broad band .
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Waveguide tilt + ARC

Increasing the angle the transmitted power is reduced than to improve
transmission and reduce modal reflection an ARC is added

Commercial SOA fiber to fiber gain
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Polarization insensitivity

In many telecom applications is requested an SOA insensitive to the input
field polarization. This dependence can be due to:

- the waveguide I'+¢. 1,

- the semiconductor material gain in QW with tensile (TE) or compressive
TM) strain

For the wg. effect a proper design helps

For the QW a proper combination of tensile and compressive strain
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SOA static saturation model

d_P — (I‘g _ ai) P Longitudinal power evolution

dz

PS(Z) = PS(O) exp (j.(rgs(z')_ a,-)dZ |] PS(O) InpUt power

where taking into account the carriers RE one obtain

_ 8o
8s 1+P(2)/ P, and
Neglecting internal losses a, << ['g we obtain

P(L)- PS(O)] o bW _ G, eXPL_ P(L) G - 1]
P P, (0) P G

N sat
sat

P_ =haw, AphTs [a; A=A, photon area

P.(L)=P.(0) G, exp[—

P

sat

P (L)
where G, = e " and if Go>1 G =G, CXP(— j

G, unsaturated gain 9



Gain (dB)

Gain (dB)

SOA Static model results
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Increase the saturation power

Been P, =hw A, 7, /a; and A=A, photon area

The photon area can be easily increased widening the waveguide width

In the analysis of this kind of structures

f%?f!ﬂﬁi;i e Etched cavity- 1 the diffraction effects should be properly
gain region \ [ etine BV gainregion  considered with the possibility to excite

high order mode in the tapered section.
The analysis can be done using the
Beam Propagation Method (BPM).

t : : :
AR <Cotad \ _ / AR_LM M2 has influence on the fiber coupling
; Metallisation

input facet output facet 17
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SOA applications in the linear regime

Semiconductor Laser Chip
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Other SOA applications - 1

SG-DBR + SOA

MOPA

Tapersd power amplifier

Figure 8.8 Monolithic MOPA.

Reflective SOA (RSOA) as modulator in PON S an amplifier in a REAM

, Voltage |
mirror ; Conttnuous wavelength

JUT U

EAM S0A



Other SOA applications — XGM
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Other SOA system applications
E_ OEDM and equalization
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SOA non linear dynamics

The most general formulation used to analyze the laser dynamic can be used
for the study of the SOA dynamic; only one equation can be used

( —= - ]E(z,t) =11+ jo)Tg -, )E(z,0) + fr(2.0)

v, 9t 9z

2
N _ ;N _ g|E| Assuming 8 =a(N -N,)
At lrs ha)OAph

> and using for pulse 2=z
dg _80-8 _ 8|E| propagation a local oo 2
dt T T P reference system - y

8

d

;E(Z' 1) =5((+jlg - o) 2 1)+ fi (2 1)
Z
o Y o INE
dgZ.1) _8=8(.1)_ 8@ A |BE1)
df T TP 6

A sat




Pulse train propagation
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SOA applications: XPM

A- converter using XPM

The IM modulation is
transferred to CW by XPM at
the output interferometer.
Better Extinction Ratio than
XGM device

Data | L |
Mach-Zehnder
cw S0A Interferometer
_/m
S0A
pate: [ LI L
cW—_—_— SOA
11 iy
I3
23y B e

Demultiplexing of a 160Gb/s data stream.

The first pulse saturate the upper SOA, the
unbalanced MZI let the pulse to be switched
at the other port, second pulse needed to
balance the MZI due to the slow carrier

recovery
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SOA applications: FWM
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Specbrum CRIBE IV

SOA noise - ASE

Is due to the spontaneous emission generated in each longitudinal section,
propagating in both directions and amplified by the SOA:
Amplified Spontaneous Emission (ASE)

How can be computed:

- The FTTW method can include the noise and is well adapted to compute
the ASE. It is important to well represent the gain function spectrum using
proper numerical filters

- Other existing techniques are based on the spectral “slicing” and consist
in integrating the longitudinal evolution of each component of the SE in both
direction and also of the input field
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SLED structure

The structure is very similar to the SOA with NO input signal and as a output
the Amplified Spontaneous Emission (ASE)

All the described solution to reduce the mirror reflectivity in SOA are used and
furthermore one can use an absorbing section

Absorbing section

5i0y
Active
- region

Active LA
4 region

Fig. 23.9. Common structures of superluminescent diodes (SLDs). (a) SLD with cleaved
facets coated with anti-reflection (AR) coatings. (b) SLD with cleaved, reflecting facets 21
and stripe contact injecting current over the partial length of the device,



Examples of SLED characteristics - 1

820 nm SLED L-1 Curve
1300 nm SLED Device L-I curve
4
0
3
E - a0
E 2 =
= =
o
1 10
0 a
0 40 80 20 160 0 100 200 a0a 200 500
lop{maA) lop{ma)

(a)

Relative Power Density vs wavelength

&
i :
& o 5
L ; DU §---emoe e e e e e oo fomee e foseee e e
g =] : 1 ' '
o : i i i
4 S Org4-e frmm e b e s e e e
= ! i Mndulasion |ihused H
é E; Specium Modulaton (L= = M_a D:,:Tmi z = X 0%
! : H e ;
= (S A R ! & 05 - “g'
! . ; ; : . : |
1240 1280 4 zat:l 1300 1320 9 3au 1360 o5 ; : : :
wavelengthinm 12996 12807 12938 13004 13003 1300.5

Wavelength/nm




Examples of SLED characteristics - 2
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Fig. 4 1550 nm SLED bandwidth at 250 mA (Inphenix's IPSDD1502 and IP3SDD1503
Products) is about 50 nm for bulk structure (a), and 100 nm for MQW structure (b).
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SLED application to OCT

Optical coherence tomography (OCT) can perform micron scale, noninvasive
imaging of biological tissue morphology and is successfully applied in the clinic.

OCT is based on low-coherence interferometry: the axial image resolution
is determined by the bandwidth and center wavelength of the light source.

Assuming a Gaussian like light source spectrum shape, the axial resolution is
Az= 0.44 A 2%/ AA,,, ; axial resolution less than 5 ym in tissue at 1300 nm.

Broad bandwidth
source (QD-SLED)

B

Detector

‘ _J

Michelson interferometer

Fiber-optic
beam splitter

<>
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delay line
scannizrg reference
— ’M ’ mirror
LRI 24




SLED for OCT: the structure
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A schematic of a multi-contact QD-SLED
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SLED: spectral characteristic

A part the spectral width also its Fourier Transform, the SLED Point Spread
Function, is important because high levels of the side lobes may generate
ghost images

: : : Combination of SLED
Change in the QD material (USheffield) _ _ _ .
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Examples of OCT images

ven!

¥ Figure 2. Three-dimensional images of part of a normal human eye
o | obtained using OCT. The images (a)~{e) show both the topography and
i - morphology of the entive foveal depression, and (f) shows the pattern
. & of the retinal oascular net, (Figure courfesy of W. Drexley, Medical
University, Vienna, Austria, 205,




