

2443-4

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry

4 - 15 February 2013

General introduction to solid-state lasers

L. Carra'

Bright Solutions, Pavia

Italy

General introduction to solid-state lasers

Trends in laser development and multidisciplinary applications to science and industry

Dr. Luca Carrà

Bright Solutions srl - Pavia - Italy

February 5, 2013

Outline

- Introduction
- Doping, inversion, gain, power model, CW operation
- Materials
- Geometries (pump schemes, resonators, active media shapes)
- Fiber lasers
- Pulsed operation: Q-switching
- Pulsed operation: mode-locking
- Non linear optics: harmonics generation

Introduction (I)

A solid state laser is a transformer box for light

Introduction (II)

Active medium: crystal or glass material doped with rare earth ions or transition metals

Additional elements for: pulsed operation, frequency conversions, etc.

Energy level diagram of active ions in solid-state lasers

- $\Delta E > 0.1 \text{ eV} \rightarrow \text{Four-level system (Nd:YAG, Nd:YVO}_4, Ti:Sapphire)}$
- $\Delta E < 0.01 \text{ eV} \rightarrow \text{Three-level system (Ruby)}$
- 0.02 eV $< \Delta E <$ 0.1 eV \rightarrow Quasi-three level system (Yb:YAG)

Solid state lasers dopants and hosts

Dopants:

- Rare Earths or Lanthanides (narrow emission lines): Nd, Yb, Er, Tm, Gd, Pm, Sm, ...
- Transition Metals (tunable lasers): Ti, Cr, ...

Hosts:

- Oxides: Y₃Al₅O₁₂ (YAG), YVO₄ (Yttrium Vanadate), Al₂O₃ (Sapphire), . . .
- <u>Fluorides</u>: LiYF₄ (YLF), LiSrAlF₆ (LISAF), . . .
- Glass: phosphate and silicate

Pumping

pump rate

optical pump power

$$W \cdot N_0 Al \cdot hv_P = \eta_{abs} \cdot P_{pump}$$

number of dopant ions

absorption efficiency

ENERGY STORED IN TERMS OF POPULATION INVERSION:

$$W \cdot N_0 A l \cdot h v_L = h v_L / h v_P \cdot \eta_{abs} P_{pump} = \lambda_P / \lambda_L \cdot \eta_{abs} P_{pump}$$

quantum efficiency

Population inversion

Population inversion:
$$\Delta N = N_2 - N_1$$

$$\frac{\mathrm{d}\Delta N}{\mathrm{d}t} = W(N_0 - \Delta N) - \frac{\Delta N}{\tau} \rightarrow \tau \text{ is the upper-state lifetime}$$

$$\Delta N \approx W \tau N_0 (1 - \exp(-t/\tau)) \approx W \tau N_0$$
 for $t \gg \tau$

STORED ENERGY:
$$E_S = \Delta N \cdot Al \cdot hv_L \approx WN_0 \tau \cdot Al \cdot hv_L \quad (t \gg \tau)$$

Gain

The interaction probability between photons and ions defines an **emission cross-section** σ

$$P(L)/P(0) = G_0 = \exp(\sigma \cdot \Delta N \cdot l) = \exp(g_0 \cdot l)$$

 $g_0 = \sigma \cdot \Delta N$ is the **small signal gain coefficient**, $g_0 l$ is the small signal gain

Losses and gain saturation in a laser amplifier

Intensity
$$I_0$$

$$g_0 l, \alpha_0 l$$
Intensity $I_1 = I_0 \exp(g_0 l - \alpha_0 l)$

Absorption cross-section: $\sigma_A \rightarrow \text{Attenuation: } P(l) = P(0) \exp(-N_0 \sigma_A l) = \exp(-\alpha_0 l)$

SMALL SIGNAL GAIN FACTOR: $G_0 = \exp(g_0 l)$

LOSS FACTOR: $V = \exp(-\alpha_0 l)$

By rewriting the power available as population inversion and stored energy, we get:

$$g_0 lAI_S = \lambda_P / \lambda_L \cdot \eta_{abs} P_{pump}$$
 and $E_S = g_0 lAI_S \tau = \lambda_P / \lambda_L \cdot \eta_{abs} P_{pump} \tau$

where

 $I_S = hv_L/(\sigma\tau)$ is called saturation intensity

By extracting power from a laser medium, population inversion and gain has to decrease

SATURATED GAIN: $gl = g_0 l/(1 + I/I_S)$

GAIN FACTOR: $G = \exp(gl)$

Some examples

LASER MEDIUM	$\lambda_L [\mu \mathrm{m}]$	$\sigma [10^{-19} \mathrm{cm}^{-2}]$	τ [μs]	I_S [kW/cm ²]
Nd:YAG	1.064	4.1	230	2.00
Nd:YVO ₄	1.064	15.0	100	1.26
Nd:YLF	1.047	1.8	480	2.15
Yb:YAG	1.03	0.21	970	9.50
Yb:KYW	1.03	0.3	300	21.58
Cr:LiSAF	0.85	0.5	67	70.25
Ti:Sapphire	0.79	2.8	3.2	160
Yb: SiO ₂	1.03	0.08	800	30.5

High $\sigma\tau$ product \rightarrow low saturation intensity \rightarrow high gain and low laser threshold

Long upper-state lifetime $\tau \rightarrow$ high energy storage

Nd:YAG absorption and emission spectra

Nd:YAG emission (left) and absorption spectra (right) *W. Koechner*, SOLID-STATE LASER ENGINEERING, Sixth Ed.

Ti:Sapphire emission and absorption spectra

Ti:Sapphire emission and absorption spectra *W. Koechner*, SOLID-STATE LASER ENGINEERING, Sixth Ed.

Round-trip in a laser resonator

I is the average intensity in the resonator

Gain factor: $G = \exp[g_0 l/(1 + I/I_S)]$

Loss factor: $V_S = \Gamma \exp(-\alpha_0 l)$

 Γ is the single-pass diffraction loss

Round-trip steps

•
$$I_1 = GV_SI_0$$

$$I_2 = RI_1 = RGV_SI_0$$

$$\bullet I_3 = GV_SI_2 = G^2V_S^2R \cdot I_0$$

Lasing condition: $I_3 = I_0$

$$G^2 V_S^2 R = 1$$

Laser output power (I)

$$G^2 V_S^2 R = 1$$
 $\rightarrow \exp[2g_0 l/(1 + I/I_S) - 2\alpha_0 l]R\Gamma^2 = 1$

$$g_0 l/(1 + I/I_S) - \alpha_0 l = -\ln(\Gamma \sqrt{R}) \rightarrow g_0 l - \alpha_0 l(1 + I/I_S) = -\ln(\Gamma \sqrt{R}) \cdot (1 + I/I_S)$$

$$I = I_S \frac{1}{|\ln(\sqrt{R}V_S)|} \cdot [g_0 l - |\ln(\sqrt{R}V_S)|]$$

The average intensity *I* is the sum of the two counter-propagating intensities Assuming that both waves carry the same intensity (low output coupling approximation):

$$P_{out} = A_B I_1 (1-R) = A_B I/2 \cdot (1-R) = A_B I_S \frac{1-R}{|2\ln(\sqrt{R}V_S)|} \cdot [g_0 \, l - |\ln(\sqrt{R}V_S)|]$$

15 / 33

Laser output power (II)

By taking into account the expression for the small signal gain:

$$g_0 lAI_S = \lambda_P / \lambda_L \cdot \eta_{abs} P_{pump}$$

and assuming a constant mode beam area A_B , we get:

$$P_{out} = \frac{A_B}{A} \cdot \frac{1 - R}{2|\ln(\sqrt{R}V_S)|} \cdot [\lambda_P/\lambda_L \cdot \eta_{abs}P_{pump} - AI_S|\ln(\sqrt{R}V_S)|] = \eta \cdot (P_{pump} - P_{pump,th})$$

Threshold pump power

$$P_{pump,th} = \frac{AI_S}{\lambda_P/\lambda_L \cdot \eta_{abs}} \cdot |\ln(\sqrt{R}V_S)|$$

Slope efficiency

$$\eta = \frac{A_B}{A} \cdot \frac{1 - R}{2|\ln(\sqrt{R}V_S)|} \cdot \lambda_P / \lambda_L \cdot \eta_{abs}$$

Optimum output coupling

The output coupling ratio *R* can be chosen for maximum output power:

Optimum output coupling:

$$\ln R_{opt} = -2\alpha_0 l \left[\sqrt{\frac{g_0 l}{\alpha_0 l}} - 1 \right]$$

Maximum optical efficiency:

$$\begin{split} \eta_{opt,max} &= \frac{P_{out,max}}{P_{pump}} = \\ &= \lambda_P / \lambda_L \cdot \eta_{abs} \cdot \frac{\alpha_0 l}{g_0 l} \cdot \left[\sqrt{\frac{g_0 l}{\alpha_0 l}} - 1 \right]^2 \end{split}$$

The optimum output coupling depends on the small signal gain and losses

Laser resonators

The mode size A_B in the previous equations depends on the resonator design. We consider resonators with two mirrors. Actual resonator might be way more complicated! Mirrors have their own radius of curvature (R > 0 for convex mirrors) We define g-parameters as follows:

$$g_i = 1 - \frac{L}{R_i}$$
 $i = 1, 2$ \rightarrow L is the resonator length

Resonators define eigenmodes, E-field distributions which retain their profile after every round-trip

Stable resonators

Condition for resonator stability:

$$0 \le g_1 g_2 \le 1$$

Beam radius of fundamental mode on mirrors 1,2:

$$w_i^2 = \frac{\lambda_L L}{\pi} \sqrt{\frac{g_j}{g_i (1 - g_1 g_2)}}$$
 i,

$$i, j = 1, 2; i \neq j$$

Beam waist in the resonator:

$$w_0^2 = \frac{\lambda_L L}{\pi} \frac{\sqrt{g_1 g_2 (1 - g_1 g_2)}}{|g_1 + g_2 - 2g_1 g_2|}$$

In multimode operation the beam area is $\approx M^2$ larger than the fundamental mode area

Pumping schemes and active media geometries

- OPTICAL PUMPING:
 - flash-lamps or arc-lamps:
 - very high pump power, immune to current or voltage spikes 🙂
 - limited lifetime, low wall-plug efficiency (a few percents), low brightness 😟
 - diode-pumping (end-pumping or side-pumping):
 - high wall-plug efficiency, narrow bandwidth, high beam quality (allowing end-pumping and precise mode-matching), long lifetime, compactness
 - higher cost per watt of pump power 🙂
- ACTIVE MEDIA GEOMETRIES:
 - Rod: side-pumping or end-pumping (Nd:YAG)
 - Slab: side-pumping (Nd:YVO₄, Nd:YAG)
 - Thin-Disk: optimum for heat dissipation, requires high pump absorption and high doping concentration (Yb:YAG)
 - Fiber: optimum for heat dissipation and beam confinement

Fiber lasers

- Resonator layout significantly simplified
- Mode area and beam quality determined by the propagation condition inside of the optical fiber
- The pump power needs to be coupled into the resonator through WDMs or pump combiners
- The mirrors can be realized inside of the fiber (Fiber Bragg Gratings, FBG)
- Easier management of thermal problems than in bulk materials
- High brightness

Pulsed operation

- CW operation allows to achieve output power in the order of 10 kW (fiber lasers) or few kW (bulk materials)
- Lasers can also operate in pulsed regimes (e.g. by using a pulsed pump source)
- Q-switching and mode-locking allows to redistribute the stored energy to get high peak powers and pulse energies
- High peak powers and pulse energies are required in a number of applications (material processing and non-linear processes)
- Q-switching allows to generate ns-long pulses with energies up to 100's of mJ and repetition rates from a few Hz to a few 100's of kHz (peak power in the order of kWs)
- Mode-locking operation allows to get μ J-level ps-long or fs-long pulses (ultrafast pulses) with repetition rates ranging from 10's of MHz up to a 10's of GHz (peak power in the order of MWs)

Q-factor

$$T_R = \frac{2L}{c}$$
 \rightarrow round-trip time

$$T_R = \frac{2L}{c}$$
 \rightarrow round-trip time $\epsilon = 2\alpha_0 l - \ln R$ \rightarrow fractional loss per round-trip

$$\tau_c = \frac{T_R}{\epsilon}$$
 \rightarrow average lifetime of photons in the resonator

We define a Q-factor as ratio between the stored energy E_{st} and the dissipated energy E_d in an optical cycle $T_0 = v_0^{-1} = \lambda_L/c$:

$$Q = 2\pi \frac{E_{St}}{E_d} = 2\pi \frac{E_{St}}{E_{St} \cdot [1 - \exp(-T_0/\tau_c)]} \approx \frac{2\pi \tau_c}{T_0} = 2\pi v_0 \tau_c \quad \rightarrow \quad \text{the lower the losses the higher Q}$$

Q-switching principle of operation

W. Koechner, Solid-State Laser Engineering, Sixth Ed.

- Initially Q is low for energy storing by pumping over a time interval $\approx \tau$
- A much higher population inversion than the threshold value for high *Q* is achieved
- The Q level is suddenly increased and the energy is released in the form of a giant pulse
- Due to the high gain established, the energy is released in a short pulse
- The peak power exceeds by several orders of magnitude the power of CW lasers in the same pumping conditions

Q-switching pulse parameters

Peak power
$$\rightarrow$$
 $P_{peak} \approx \frac{hv_L}{\sigma} A_B \cdot \frac{\ln(1/R)}{T_R} g_i$

Pulse energy \rightarrow $E_P \approx \frac{hv_L}{\sigma} A_B \cdot \frac{\ln(1/R)}{\epsilon} g_i$

Pulse duration \rightarrow $\tau_P \approx \frac{E_P}{P_{peak}} \approx \frac{T_R}{\epsilon} = \tau_c$

Build-up time \rightarrow $t_b \approx \frac{20\tau_c}{g_i/g_{th}-1}$

 g_i is the initial gain before the switching time g_{th} is the laser threshold gain value for high Q value

- The pulse energy is proportional to the saturation fluence hv_L/σ
- Comparing Q-switching and CW operation at the same pump power:

$$P_{QS}/P_{CW} \approx \tau/T_R$$

• For Q-switching operation $\tau \gg T_R$ is required

Q-switching techniques

ACTIVE Q-SWITCHING

PASSIVE Q-SWITCHING

- Electro-optic or acousto-optic switches might me used
- Electro-optic switches are faster, acousto-optic switches more suited for repetition rates > 1 kHz
- Electro-optic switches (figure) include a waveplate, a Pockels cell (PC) and a polarizer

- A saturable absorber is a non-linear device with transmission increasing with the incident intensity
- The absorber has to saturate before than gain: $\frac{E/A_A}{F_{SA}} > \frac{E/A_L}{F_{SL}}$

Repetitive Q-switching (I)

W. Koechner, Solid-State Laser Engineering, Sixth Ed.

- The upper-state lifetime sets a critical frequency $1/\tau_f$
- If the repetition rate is in the order of $1/\tau_f$ the initial gain at the switching time is clamped at a lower value because population inversion can not recover completely
- High τ_f is required for energy storage while $\underline{\text{low}} \, \tau_f$ is required for operation at high repetition rates

Repetitive Q-switching (II)

Mode-locking: principle of operation

- A resonator with length *L* creates a set of equally spaced resonance frequencies
 - $\Delta \omega = \frac{c}{2L}$ \rightarrow frequency separation between two adjacent modes
- The mode-locking regime is based on the inset of a precise phase relationship between adjacent longitudinal modes: repetition rate \rightarrow $f_R = c/2L$
- Pulses are created as a consequence of constructive interference between phase-locked modes
- Higher number of phase-locked modes means larger pulse spectra and shorter pulse durations and higher peak powers: minimum pulse duration related to $\Delta\omega_A$

Mode-locking techniques

- Mode-locking operation might be achieved with:
 - ACTIVE TECHNIQUES employing electro-optic or acousto-optic modulators
 - PASSIVE TECHNIQUES employing saturable absorbers: semiconductor saturable absorber mirrors (SESAM) or Kerr-effect
- Passive techniques allow shorter pulse durations
- Pulse durations range from 10's of picosecond down to a few femtoseconds
- For pulse duration below 1 ps group velocity dispersion has to be taken into account

Non-linear optics

$$\frac{\partial^2 E}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = -\frac{1}{\epsilon_0} \frac{\partial^2 P}{\partial t^2} \longleftarrow$$

The incident electric field E creates in the medium a polarization P. For weak fields: $P = \epsilon_0 \chi^{(1)} E$

In general:
$$P = \epsilon_0 \left(\chi^{(1)} E + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \ldots \right) = P^{(L)} + P^{(NL)}$$

$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$
0.01 - 5	$\sim 10^{-12} \text{ m/V}$	$\sim 10^{-20} \text{ m}^2/\text{V}^2$

QUANTUM MECHANICAL DESCRIPTION (SHG):

ENERGY CONSERVATION:

$$\hbar \cdot \omega + \hbar \cdot \omega = \hbar \cdot 2\omega$$

MOMENTUM CONSERVATION:

$$\hbar \cdot \mathbf{k} + \hbar \cdot \mathbf{k} = \hbar \cdot 2\mathbf{k}$$

$$\frac{\hbar\omega}{c}n(\omega) + \frac{\hbar\omega}{c}n(\omega) = \frac{\hbar\cdot 2\omega}{c}n(2\omega) \to n(\omega) = n(2\omega)$$

Polarized light is required!

Generation of new frequencies

Second order nonlinearity $(\chi^{(2)})$

- Second harmonic generation
- Sum frequency generation
- Parametric amplification

Third order nonlinearity $(\chi^{(3)})$

- Third harmonic generation
- Sum and difference frequency generation
- Kerr effect
- Due to the typical values of $\chi^{(2)}$ the required optical intensities for efficient frequency conversion are $\gtrsim 100 \, \text{MW/cm}^2$
- New frequencies can be easily generated with Q-switched and mode-locked lasers
- SHG (second harmonic generation) and THG (third harmonic generation) can be achieved also in CW lasers by intra-cavity generation
- Due to the typically low values for $\chi^{(3)}$ it is usually more convenient to generate third order effects by cascading two second order processes

Further reading

• W. Koechner, Solid-State Laser Engineering, Sixth Ed., Springer

• A. E. Siegman, LASERS, University Science Books

