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These two water balance components represent the water loss flux densities, in the vapor 12 

phase, from an elemental volume containing water. Evaporation is the loss through non living 13 

surfaces, like free water bodies and bare soil surface. Evapotranspiration is the loss though living 14 

organisms, in our case, the plant. The passage of water from the liquid phase to the vapor phase, 15 

which occurs below the boiling point, depends on the available energy that ultimately comes 16 

from the sun, and on other atmospheric conditions like air temperature and humidity, and wind. 17 

The average energy/evaporation relation is 245 J mm-1 for temperatures in the range 10 to 30o C. 18 

The process occurs even under no direct solar radiation presence, and in this case the energy is 19 

taken from the surrounding matter, like air, water itself, soil etc. 20 

In the agro-ecosystems, evaporation occurs mainly at the surfaces of free water bodies 21 

and bare soil. Whenever plants are present, we talk about evapotranspiration. Some definitions 22 

are essential: 23 

 24 

1. Potential Evapotranspiration (ET0, mm) also called Reference Evapotranspiration (with 25 

symbols ETR, ETr, ETP, ETp), which is the water loss from a large green grass cover that occurs 26 

under conditions of no restriction of water availability. Under such conditions the atmosphere, 27 

through solar radiation, air temperature and humidity, and wind, regulates the process. It is also 28 

taken as an atmospheric potential of evaporation, in the sense that it can be calculated for 29 

situations even without the presence of water, e.g. Sahara desert. It characterizes the atmospheric 30 

demand of a region. A value of ET0 = 12 mm, can be seen as a condition under which 12 mm of 31 

water would evaporate if water would be freely available. 32 

 33 

2. Maximum Evapotranspiration (ETm, mm) also called Crop Evapotranspiratio (ETc) is the same 34 

definition of ET0 but for a crop different than grass, i.e., corn, soybean, cotton, forest, etc, 35 

because the loss of water depends on the cover. ETm is related to ET0 through a crop coefficient 36 

Kc: 37 

ETm = Kc x ET0     (1) 38 
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Kc relates ET of a given crop to the ET of grass under the same atmospheric conditions. So, Kc 39 

has to be known, and data on Kc are widely available in the literature (ALLEN et al., 1998), for 40 

different crop management systems and growth stages. 41 

 42 

3. Actual (or real) Evapotranspiration (ETa, mm), which occurs at any moment of an agro-43 

ecosystem, with or without water availability restriction. Without restriction ETa = ETm, and 44 

under restriction ETa < ETm. The soil can restrict the flow of water to its surface and to plant 45 

roots. Here Soil Physics plays an important role. Soil water retention and transmission 46 

characteristics control water movement in the soil.  47 

There are several methods that estimate ET0 or ETP from atmospheric data. Thorntwaite 48 

presented one of the first methods, based on air temperature only, that is widely used to date. The 49 

calculation of ETPTH is based on the equation: 50 

    (2) 51 

where  is the temperature of month , in °C;  the heat index of the region calculated 52 

according to Equation 4;  is a correction factor for latitude and month of the year (Table 1); and 53 

 is a regional thermal index calculated by Equation 5, in mm month-1. The f factor is important 54 

to correct for the real number of days of each month. 55 

Equation 2 is used for . For ,  is given by: 56 

    (3) 57 

 58 

Table 1 – Monthly correction factor f for latitude 22° S 

Month 
 

Month 
 

January 1,14 July 0,94 

February 1,00 August 0,99 

March 1,05 September 1,00 

April 0,97 October 1,09 

May 0,95 November 1,10 

June 0,90 December 1,16 
Source: Thornthwaite (1948); Pereira; Angelocci; Sentelhas (2002) 59 

 60 
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The value of  depends on the annual rhythm of the temperature and integrates the 61 

thermal effect of each month (PEREIRA; VILLA NOVA; SEDIYAMA, 1997; PEREIRA; 62 

ANGELOCCI; SENTELHAS, 2002): 63 

     (4) 64 

In the same way as ,  is calculated with the climatologial normals, with characteristic 65 

coefficients for each region, independent of the year under study. The  exponent is calculated 66 

as: 67 

  (5) 68 

To estimate ETp by Penmam (ETPp) the following equation is used: 69 

     (6) 70 

where  is the latent evaporation heat (MJ kg-1);  is a weight factor dependent on air 71 

temperature do ar (Equation 7);  the net radiation (MJ m-² d-1);  the evaporative air power 72 

(MJ m-² d-1), obtained by Equation 11. 73 

       (7) 74 

with  equal to the slope of the saturation vapor pressure VS air temperature, in kPa °C-1 75 

(Equation 10), and  the psychometric constant related to the atmospheric pressure (Pa) by: 76 

     (8) 77 

      (9) 78 

with  equal to the saturation vapor pressure (kPa), calculated by equation 10 and  the 79 

average air temperature (°C). 80 

     (10) 81 

The evaporation power of the air ( MJ m-² d-1) is given by: 82 

      (11) 83 

where  is given by Equation 13 and  is the vapor pressure deficit (kPa), defined as: 84 

      (12) 85 

with  equal to the actual vapor pressure (kPa). The empirical function of the wind velocity 86 

 is given by: 87 
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      (13) 88 

with  equal to 6.43 MJ m-² d-1 kPa-1;  = 1; b = 0.526 s m-1 and  the Wind speed 2 m  above 89 

soil surfece (m s-1). 90 

By the Penman-Monteith method, ETPpm is calculated through: 91 

   (14) 92 

where   is the soil heat flux density (MJ m-² d-1.). 93 

  94 

As we have seen in our first lecture, these evapotranspiration definitions and estimations, 95 

can be used to calculate water balances (WBs). We give here as examples of climatologic WBs, 96 

the methods of Thornthwaite and Mather (THORNTHWAITE-MATHER, 1955), Rijtema and 97 

Aboukhaled (RIJTEMA; ABOUKHALED, 1975; DOURADO-NETO; DE JONG VAN LIER, 98 

1993) and the Cossenoidal (DOURADO-NETO; DE JONG VAN LIER, 1993). The main 99 

components of these balances are the evapotranspiration ET and the rainfall P. The difference P 100 

– ET is called first balance B, when positive indicating water excess EXC and when negative 101 

deficit DEF. Under deficit conditions the soil enters as a water source. 102 

First these WB programs calculate ET0 according to one of the above described methods, 103 

and with the crop coefficient Kc these values are transformed into ETp, to thereafter calculate B 104 

= P – ETp. We take a monthly WB example, for which a balance sheet is organized including 105 

columns of i (month), Pi, ET0i, Bi, the accumulated negative Li (explained below), the soil water 106 

storage Si, ETa, DEF and EXC, as shown in Table 2. 107 

 108 
Table 2 - An example of a Thornthwaite and Mather climatologic water balance sheet 109 
Month i ETPi Pi Bi Li Si ΔSi ETai DEFi EXCi 
1 124.0 300 176.0 0.0 125.0 0.0 124.0 0.0 176.0 
2 106.4 250 143.6 0.0 125.0 0.0 106.4 0.0 143.6 
3 114.7 70 -44.7 44.7 87.4 -37.6 107.6 7.1 0.0 
4 108.0 0 -108.0 152.7 36.8 -50.6 50.6 57.4 0.0 
5 108.5 0 -108.5 261.2 15.5 -21.4 21.4 87.1 0.0 
6 75.0 0 -75.0 336.2 8.5 -7.0 7.0 68.0 0.0 
7 80.6 0 -80.6 416.8 4.5 -4.0 4.0 76.6 0.0 
8 86.8 60 -26.8 443.6 3.6 -0.9 60.9 25.9 0.0 
9 90.0 120 30.0 164.2 33.6 30.0 90.0 0.0 0.0 
10 99.2 150 50.8 49.1 84.4 50.8 99.2 0.0 0.0 
11 120.0 190 70.0 0.0 125.0 40.6 120.0 0.0 29.4 
12 127.1 280 152.9 0.0 125.0 0.0 127.1 0.0 152.9 

          Year 1240.3 1420.0 
    

918.1 322.2 501.9 
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          Soil water storage is taken as the amount of water in mm, present in the soil layer chosen 110 

for the balance. A saturated soil has a volumetric water content θs, which is subject to drainage 111 

up to the field capacity FC, a point with θ = θFC. Plants extract soil water up to the permanent 112 

wilting point PWP, a point with θ = θPMP. Below wilting point water is not available to plants 113 

anymore. The interval FC – PMP is called available water capacity AWC, which can be 114 

expressed in m3 m-3 as θFC – θPMP, or in mm, using the concept of S. As already mentioned 115 

above, stating with a soil at saturation, ET = ET0 up to θFC and thereafter soil water is extracted 116 

by plants up to θPMP.  As a soil dries out, the facility of plants to extract water decreases due to 117 

water movement reduction from soil to root because the soil hydraulic conductivity is reduced. 118 

Under such conditions B becomes negative and ET = ETa, or ETa < ETp. The reduction of ETa 119 

as time t passes, equal to ETa, is assumed different for the authors here considered: 120 

 121 
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 122 
Figure 1 - Rate of soil water loss (ETa, mm/period of time) as a function of storage (AWC, mm) 123 

for the methods of Thornthwaite and Mather, Rijtema and Aboukhaled and Dourado and Van 124 

Lier. 125 

 126 

Thornthwaite and Mather consider a constant rate of ETa decrease in time from the FC to 127 

the PWP. This means that the restriction of the soil in allowing the plant to extract soil water 128 

begins at the FC and is linear reaching zero at the PWP (Figure 1). In the balance sheet shown in 129 

Table 2, when Bi is negative, they consider : 130 

     (15) 131 
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When the dry season starts (Table 2) and Bi starts to become negative (B3 in example of 132 

Table 2), Li-1 is considered 0 with S = AWC (line 2 in Table 2, AWC = 125 mm). Due to the 133 

assumption that dETa/dt is linear, the changes in Si decrease exponentially, indicating that as time 134 

passes it is more and more difficult to extract water from the soil. It  is demonstrated that Si can 135 

be calculated as:  136 

      (16) 137 

 When the rainy season begins, Bi becomes positive and the soil reservoir is filled up 138 

again. In this case, 139 

      (17) 140 

When Si becomes greater than the AWC, there will be EXC of water and Si is maintained 141 

as AWC. In these cases: 142 

     (18) 143 

Which is again a consequence of the linearity of dETa/dt. 144 

Rijtema and Aboukhaled (1975) consider that ETa = ETm for the initial extraction of the 145 

AW, up to a critical point and from there on, the decrease of ETa is also considered linear as in 146 

the case of Thornthwaite and Matter (Figure 1). For this method, a p factor is considered related 147 

to water availability, to estimate S and that is tabulated in Allen et al. (1998) for ETa of 5 mm d-1. 148 

Days for which this condition is not observed, p is calculated as: 149 

    (19) 150 

If , then: 151 

     (20) 152 

       (21) 153 

If  and B is less than zero: 154 

     (22) 155 

   (23) 156 

If  and B is greater than zero: 157 

     (24) 158 

  (25) 159 

When Si is greater than the AWC, Si = AWC. 160 

For the Dourado and Van Lier method, ETa is also assumed equal to ETm up to the 161 

critical point, but from there on the reduction of ETa is considered cosenoidal, i.e., dETa/dt has a 162 

coscenoidal shape (Figure 1). This approach has the advantage of eliminating the sharp beak of 163 
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the curve at the critical point and also leads ETa assymptotically to zero. The parameter p is also 164 

calculated according to equation 19, and the rate of soil water loss is assumed to be cosenoidal, 165 

Li and Si are estimated as: 166 

If  , then: 167 

   (26) 168 

And when  : 169 

     (27) 170 

For soil reservoir filling, when   171 

   (28) 172 

And when  : 173 

     (35) 174 

These WB methods evaluate both EPP and Eta. There are several other methods for their 175 

evaluation, as field WBs, Lysimeters, etc. 176 

 177 
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 197 

Following this presentation of ET definitions and their measurements through 198 

climatologic data, we preset an analysis of WB components directly measured in the Field. This 199 

work was published as Timm et. al.( 2011), with the title: 200 

 201 

TEMPORAL VARIABILITY OF SOIL WATER STORAGE EVALUATED FOR A 202 

COFFEE FIELD. 203 

 204 

Soil water storage (S) in agricultural soil profiles is an important parameter for a 205 

rational management of any crop, besides giving information on environmental aspects of the 206 

water cycle. Spatial variability of S, however, imposes serious problems when determining 207 

average values over large areas, which are needed to take actions in relation to water availability 208 

to crops. The variability of S is a consequence of the erratic rainfall input, differences in crop 209 

stand, and of natural soil matrix differences that can occur over short distances as well as over 210 

large fields due to soil genesis and topography. The knowledge of the characteristics of the 211 

variability of S helps to understand and predict several hydrologic processes (Western et al,. 212 

2004) and to improve soil water sampling strategies (Warrick and Nielsen, 1980).  213 

The variability of soil physical and chemical properties is not a new research topic. 214 

Since the first half of last century the way of obtaining the representative sampling of 215 

agricultural fields always lead to the development of new sampling schemes. First scientists 216 

based their strategies on classical statistics concepts which were later complemented with 217 

geoestatistics and time-space series analyses, and more recently using neural networks (Hills and 218 

Reynolds, 1969; Mohanty and Mousli, 2000; Western et al,. 2002; Timm et al., 2006; Hu et al., 219 

2008). 220 

The temporal stability of S measurements was first indicated by Vachaud et al. (1985), 221 

who statistically determined the presence of locations that systematically presented soil water 222 

contents above or below the field average. Kachanoski and De Jong (1988) and Moreti et al. 223 

(2007) also used this concept to show the temporal persistence of spatial patterns of soil water 224 

storage. Reichardt et al. (1997) suggested that part of the time stability of soil water content 225 

measurements is due to systematic errors introduced by soil water content calibration curves, 226 

when indirect methods of measurement are employed, such as neutron probes, time domain 227 

reflectrometry (TDR), and frequency domain reflectrometry (FDR). Hu et al. (2008) verified the 228 
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time stability of soil water content measurements made using this last methodology at the soil 229 

surface layer of a hill-slope of the Loess Plateau in China, and found significant correlations with 230 

several landscape influencing factors. More recently Hu et al. (2010) presented a new criterion to 231 

identify sites for S determinations based on the mean absolute bias error. 232 

Few studies have analyzed the time variability of S as affected by evapotranspiration 233 

and rainfall. A comprehensive report, however, has been presented by Aboitiz et al. (1986), who 234 

developed a methodology for estimating and forecasting soil water depletion and 235 

evapotranspiration in irrigated fields, using a time-varying state-space model, which we here call 236 

state-time. We have the aim of contributing to the improvement of water management practices 237 

of natural ecosystems and perennial crops such as the coffee crop, analyzing a 2-year series of 238 

soil water storage measurements, giving emphasis to the time stability and spatial variability of 239 

this set of data. A new perspective and a deeper insight is made through a state-time analysis to 240 

better understand the temporal relations between soil water storage, rainfall and 241 

evapotranspiration.  242 

This study analyses the temporal variability of soil water storage (S mm) data collected 243 

in a coffee crop grown in Piracicaba, SP, Brazil ( 22o 42' 30'' S; 47o 38' 00' 'W, 580 m asl). Soil 244 

water contents θ (i) were measured along a horizontal domain xi (m) at 15 locations (i = 1, 245 

2,…,15), and at five depths zk (m), 0.2, 0.4, 0.6, 0.8, and 1.0 m from surface (k = 1, 2,…,5), every 246 

14 days, at times tj (j = 1, 2, 3,…,52) covering a two year period starting on September 01, 2003. 247 

Soil water content  measurements obtained with a neutron probe (model CPN 503 DR) were not 248 

taken at regular spacings along a leveled contour line of the horizontal domain corresponding to 249 

a coffee row, following the distribution of five fertilizer plots arranged within a 0.2 ha coffee 250 

field. Details of the fertilizer trial can be found elsewhere (Fenilli et al. 2007). Measurements of 251 

θ were made using aluminum neutron probe access tubes installed below crop canopies. The 252 

coffee (Coffea arabica L.), was of the cultivar “Catuaí Vermelho” (IAC-144) and is a perennial 253 

crop, 3 to 5 years old during the experimental period, which is the beginning of the yearly coffee 254 

production cycles. The spacing between plants was 0.75 m and between rows 1.5 m. Rows were 255 

kept bare chemically and manually, as commonly done in coffee plantations. 256 

The soil is a Rhodic Kandiudalf (Soil Survey 1993), locally called “Nitossolo Vermelho 257 

Eutroférrico” (Embrapa 2006); and the climate is of the Cwa type (Köppen 1931), with dry 258 

winter. 259 

Slow neutron counting data were transformed into soil water contents using calibration 260 

curves established as suggested by Reichardt et al. (1997), taken as valid over all depths. Soil 261 
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water storages at times j and positions i,     

! 

S j (i)  (mm) for the 0 – 1.0 m soil layer were calculated 262 

from     

! 

"t, x(k )  data by the trapezoidal rule:  263 

[ ]
5

1000)5(5.0)4()3()2()1(5.1)( ,,,,, jijijijijij iS !!!!! ++++=    (1) 264 

with Δz = 0.2m. Soil water contents )1(, ji!  measured at the depth 0.2m (k = 1) were considered 265 

to cover a layer of 1.5Δz = 0.3m which includes soil surface. The first measurement made at the 266 

depth of 0.2 m was evaluated to be deep enough not to lose slow neutrons to the 267 

atmosphere. )5(, ji!  measured at 1.0m (k = 5) covered 0.5Δz = 0.1m since the lower level of the 268 

control volume for water balances was set at 1.0 m, and the total depth L was taken as 1,000mm 269 

to obtain data in mm. The coffee root system was assumed not to reach depths below z = 1.0m, 270 

which was confirmed by Silva et al. (2009). 271 

In order to apply the following statistical procedures,     

! 

S j (i)  data were tested for 272 

normality with respect to space performing cumulative probability plots.  273 

To reduce the number of observation points so that future evaluations of the soil water 274 

status of this perennial coffee field could be made more rapidly and without losing accuracy, two 275 

approaches were used: i. making a time stability analysis to find out which access tube can 276 

represent the overall average of the field, and ii. establishing the minimum number of 277 

observation points that would yield an average value within a pre-established coefficient of 278 

variation. To verify the time stability of the measurements, the approach proposed by Vachaud et 279 

al. (1985) was used. For this, the relative deviation     

! 

" j (i)% of each     

! 

S j (i)  realization in relation 280 

to the mean soil water storage )(iS j , was calculated as follows: 281 

100
)(

)()(
)( !

"
=

iS

iSiS
i

j

jj
j#       (2)  282 

According to Vachaud et al. (1985), very small time variations of )(ij!  indicate a time 283 

stability of )(iS j , so that consistently wetter or dryer positions (i) can be selected in the field. 284 

Therefore, if time averages )( ji!  of the )(ij!  values are plotted in rank, it is possible to find out 285 

which sites present systematically )(iS j  values below or above the position time average jS  and 286 

also those sites that systematically present a negligible )( ji!  and, therefore, represent jS . 287 

To estimate the number of observations N needed in a new sampling event to obtain a 288 

mean value     

! 

St (i) , within a chosen deviation (%) of the estimated mean value, the suggestion of 289 

Warrick and Nielsen (1980) was applied: 290 
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! 

N = t"
2s2d 2        (3) 291 

where   

! 

t"  is the value of the t student distribution considering the level of significance α (for α = 292 

5% the t value is 1.96) for infinite degrees of freedom; s2 is the variance of a previous sampling 293 

event     

! 

St (i)  made with n (15 in our case) replicates, and d any desired deviation from the mean 294 

for example [0.5, 1, 2%,...of )(iSt ]. Equation (3) assumes that the samples are independent, the 295 

central limit applies and that the true mean deviation σ can be represented by the standard 296 

deviation s. 297 

In a second step, the time variability structure of the jS data was studied using the state-298 

time approach (Shumway 1988; Nielsen and Wendroth 2003) which provides opportunities for a 299 

suitable identification of temporal relations between soil-atmosphere-plant variables taking into 300 

account their temporal association. The state-time analysis characterizes the state of a system (set 301 

of p unobservable variables) at a time t to its state at a time t-j, j = 1, 2, 3, …, 52, in our study. 302 

For j =1, the state-space approach is described as follows (called state equation):   303 

    

! 

X t = "X t#1 +$X t
       (4) 304 

Xt and Xt-1 being the state vector (a set of p unobservable variables) at time t and t -1; φ a p x p 305 

matrix of state coefficients, which indicates the measure of the regression; and   

! 

"X t  noises of the 306 

system for t = 1, 2, 3,…, j. Noise values are assumed to have zero mean, not being autocorrelated 307 

and being normally distributed with constant variances. If these X variables were observable, this 308 

would be the usual structure of a vector autoregressive model, in which the coefficients of the 309 

matrix φ could be estimated by multiple regression techniques, taking Xt and Xt-1 as the 310 

dependent and independent variables, respectively. In the case of the state-time model, however, 311 

the true state of the variables is considered “embedded” in an observation equation: 312 

    

! 

Yt = AYt"1 + #Yt
       (5) 313 

the observation vector Yt being related to the state vector Xt by an observation matrix A (usually 314 

known as, for instance, an identity matrix, p x p) and an observation noise vector   

! 

"Yt
, also 315 

considered of zero mean, not autocorrelated and normally distributed. The noises   

! 

"X t  and   

! 

"Yt
 316 

are assumed to be independent of each other. The state coefficients of the matrix φ and noise 317 

variances of equation (4) are estimated through a recursive procedure given by Shumway and 318 

Stoffer (1982). According to Hui et al. (1998), if the Xt data are scaled with respect to their mean 319 

(m) and standard deviation (s), as follows: 320 

    

! 

xt = [X t " (m " 2s)]/ 4s       (6) 321 



12 

the transformed values xt become dimensionless with mean m = 0.5 and standard deviation s = 322 

0.25. This transformation allows state coefficients of the matrix φ have magnitudes directly 323 

proportional to their contribution to each state variable used in the analysis. The software 324 

Applied Statistical Time Series Analysis (ASTSA) (Shumway 1988) was used for applying the 325 

state-space approach. 326 

Concomitantly to )(iS j  measurements, Silva et al. (2006) evaluated time series of 327 

evapotranspiration ETj(i), rainfall Pj(i), supplementary sprinkler irrigation Ij(i), surface runoff 328 

ROj(i), and soil water drainage fluxes Qj(i) below the 1.0m depth, to establish complete water 329 

balances, which were used in the state-time and multiple regression analyses. Irrigation was 330 

applied only during the dry winter, in just a few events when the available water capacity 331 

reached about 25% of its maximum. For the analysis, I was added to P. For a few 14 day 332 

intervals with no rainfall during the rainy season, a negligible value of P = 0.1 mm was assumed 333 

for this variable, so that the state-time analysis could be performed. It is important to mention 334 

that classical multiple regression is based on mean values of each variable throughout the time 335 

being investigated and that the magnitudes of each variable at a given time compared to their 336 

respective values at a previous or future time are neglected. 337 

 Coefficients of variation (CV), cumulative probability plots and rank plots were also 338 

used in the analysis (SAS and R statistical programs).  339 

Soil water storage     

! 

St (i)  data were normally distributed for all 52 measurement dates, as 340 

exemplified in Figure 1 through cumulative probability plots for a wet period (January 31, 2005) 341 

and for a dry period (September 01, 2003). These spatial data presented space coefficients of 342 

variation for fixed times j in the range of 1.1 to 5.9%, indicating that the variability in space can 343 

be considered low. 344 

 345 
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 346 
Figure 1 - Cumulative probability plots of soil water storage )(iSt  for two selected dates. 347 

 348 

Ranges of soil water storage changes     

! 

"St (i)  shown in Figure 2, in which positive 349 

values represent maximum soil water recharges occurring in 14-day intervals and negative 350 

values represent soil water maximum depletions in 14-day intervals, reflect the great time 351 

variability of     

! 

St (i)  data observed during the two years in this field. Such plots give a good idea 352 

of the spatial variability of soil water storage measurements made in agricultural fields, as in this 353 

case for a coffee crop field, justifying the search for good and stable averages of S for water 354 

management purposes. 355 

 356 
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 357 
Figure 2 - Ranges of soil water storage changes )(iStΔ  observed for the fifteen neutron probe 358 

access tubes during the two year observation period, in a coffee crop field. 359 

 360 

For future measurements of     

! 

St (i)  in the same or other fields of similar condition, the 361 

minimum number N of observation points was calculated for chosen precision levels according 362 

to equation (3). Selecting three dates for which the     

! 

St (i)  value is of the order of 300 mm: j = 10, 363 

    

! 

S10(i)  = 302mm,     

! 

s10(i)= 18mm; j = 20,     

! 

S20(i)= 296mm,     

! 

s20(i)= 8mm; and j = 30,     

! 

S30(i)= 364 

285mm,     

! 

s30(i)= 3mm, for which )(ist  were maximum, medium and minimum, the deviations 365 

(d) from the mean are 5.9; 2.7; and 1.1%, respectively. For new samplings according to equation 366 

(3), if the desired )(iSt of 300mm should be evaluated within 0.5; 1 or 2% of the correct value, 367 

with an average     

! 

st = 8 mm, the number of samplings would be 56; 14; and 4, respectively. For 368 

this example, the only viable choice to reduce the number of sampling points is to accept a 369 

deviation of 2% and make future measurements in 4 access tubes.  370 

In terms of time stability of the measurements, the rank plot presented in Figure 3 371 

shows that position 3 best represents the mean     

! 

S t (i)  over the two years of observation, which 372 

means that future observations of     

! 

S t (i)  could be performed at this single site or at four sites as 373 

discussed above (sites 2, 6, 3, and 10, Fig. 3), with much lower coefficients of variation than 2% 374 

used in equation (3) since the chosen four points present the least deviation from the mean. Such 375 

measurement would represent the mean soil water storage of the whole field, greatly simplifying 376 

future experimental field work. This reduction of observation points is very important for long 377 

term experimentation in natural ecosystems or perennial crops like coffee, when     

! 

St (i)  is 378 
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observed over long periods of time (years), e.g. Silva et al. (2006) and Moreti et al. (2009). It is 379 

important to recall that in the establishment of field water balances the soil components are the 380 

more laborious measurements.  381 

 382 

 383 

Figure 3 - Rank plots of time average relative spatial storage deviations     

! 

"i ( j) . 384 

 385 

A great shortcoming of the time stability as a criterion to reduce the number of sampling 386 

points is the need of representative previous information in space and time, in order to be able to 387 

make significant rank plots of mean deviations from the mean. Therefore, the approach presented 388 

here is more suitable for long duration experiments in which costly and time-consuming 389 

variables are measured.  390 

As discussed below, the state–time analysis is a step ahead of the previous discussion 391 

since it allows a better insight of the relations among the climate variables that determine S. So, 392 

in order to better understand the temporal relations between S, P, and ET, a discussion is made 393 

comparing the state-time analysis to the classical multiple regression using the same state 394 

variables. Figures 4A and 4B show the multiple regression and state-time equations and the 395 

value of their coefficients of determination (r2) from linear regressions between estimated and 396 

measured values of scaled (equation 6) soil water storage. Classical multiple regression is based 397 

on mean values of each variable throughout the time being investigated, in which the magnitudes 398 

of each variable at a given time compared to their respective values at a previous or future time 399 

are neglected, so that no more 35.8% of the variance of the biweekly-measured soil water storage 400 

data was explained from the measurements of precipitation and evapotranspiration (Figure 4A). 401 
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Estimated values by regression are much less variable than those measured, and consistently 402 

underestimate the larger and overestimate the smaller measured values. 403 

 404 

 405 
Figure 4 - Estimates of soil water storage measured biweekly for 714 days using A. classical 406 

multiple regression and B. state-time analysis. 407 

 408 

When the temporal associations among soil water storage, precipitation, and 409 

evapotranspiration data were considered, 99.8% of the variance of the soil water storage was 410 

explained from the use of the state-time analysis (Figure 4B). We note that nearly 70% of the 411 

previous value Si-1 contributes to that of Si while preceding values Pi-1 and ETi-1 contribute only 412 

8 and 20%, respectively.  413 
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The major experimental consideration influencing the utility of state-time analyses is 414 

the time interval between successive measurements that allows the possibility of state variables 415 

to be temporally associated.  In other words, measurements taken during very short time 416 

intervals will tend to be autocorrelated or cross correlated with each other. However, with 417 

increasing time, the state variables change their magnitudes as environmental conditions change. 418 

We know that a water balance for a given soil profile is the result of five processes that occur as 419 

a function of time – precipitation plus irrigation, surface runoff, evapotranspiration, storage of 420 

water in the soil profile and the drainage of water from the soil profile. Each of these processes 421 

quantified by Silva et al. (2006), who provide data for this study indicated that surface runoff 422 

was negligible over the two year period and that the drainage of water from the soil profile has 423 

yielded accurate measurements of water storage Si in the profile. Hence, neglecting surface 424 

runoff, the use of only three state variables (S, P and ET) in the state-time analysis accounts for 425 

the physical processes responsible for a quantitative estimate of S provided that the amounts of 426 

water that eventually drain from the 1-m soil profile from occasional large rainfalls can be 427 

robustly accounted for in the state variable P. The temporal autocorrelation and cross 428 

correlations functions given in Table 1 indicate that ET, S and P have autocorrelation lengths of 429 

3, about 2 and less than 1 lag, respectively. In other words, values of ET are related to each other 430 

during more than 3 consecutive sampling dates (42 days), those of S during no more than 2 431 

consecutive sampling dates (28 days) and those of P are essentially not related to each other 432 

between consecutive sampling dates (14 days). All three values of lag are reasonable, including 433 

that for precipitation. Indeed, the general nature of rainfall is more seasonal and does not 434 

consistently repeat its relative magnitude with a 2-week periodicity through a 2-year period.  435 

 436 

Table 1 – Autocorrelation and cross correlation coefficients for state variables soil water 437 

storage S, precipitation P, and evapotranspiration ET. 438 

 Autocorrelation Coefficient  r(h)✝ Cross Correlation Coefficient  rc(h)✝ 
lag h✝✝      S     P   ET     S vs P ET vs S ET vs P 
0      1     1    1  0.595  0.153  0.359 
1  0.551 0.163 0.558  0.370  0.005  0.507 
2  0.257 0.119 0.444  0.203 -0.053  0.316 
3  0.038 0.024 0.344  0.033  0.036  0.375 
4 -0.005 0.082 0.185 -0.050  0.159  0.072 
5  0.025 0.081 0.099 -0.027  0.126 -0.028 
✝ The 95% significance level of r and rc is 0.2745. ✝✝A lag of h = 1 is equal to 14 days. 439 

 440 

Examining the cross correlation coefficients in Table 1, we are not surprised to find that 441 

ET is related to P for more than 3 consecutive sampling dates (42 days) and that S is related to P 442 
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for at least 2 consecutive sampling dates (28 days). The fact that ET and S showed essentially not 443 

to be related to each other between sampling dates is not obvious since in many occasions the 444 

actual value of ET was much below the potential value. However, during the 2-year period, 445 

regardless of the daily and biweekly fluctuations of local weather conditions, every effort was 446 

made to irrigate the field in a timely manner to provide adequate amounts of water stored in the 447 

root zone.   448 

There are several methods available to examine the reliability of state-time analyses (see 449 

for example, Shumway and Stoffer, 2000). Here, we choose (on the basis of the information in 450 

Table 1) to observe the impact of omitting increasing numbers of observations from the 451 

calculations of the state variable being estimated. An example is given in Figure 5 where the soil 452 

water storage is estimated with all measurements of P and ET, but with increasing numbers of its 453 

biweekly measurements omitted from the state-time analysis. 454 

Figure 5A illustrates the results when one-half of the observations of soil water storage 455 

were not considered in the calculations. Comparing Figures 4B and 5A, it can be seen that the 456 

coefficient of determination r2 decreased slightly from 0.998 to 0.957 and that the width of the 457 

confidence intervals increased. At each time step when a measured value of S is omitted from the 458 

calculation, its forward prediction cannot be compared to its observation, and hence, an update 459 

based on its temporal association is precluded and causes a larger confidence interval. 460 

State-time estimates in Figure 5B made while ignoring two out of every three 461 

observations of soil water storage are not as good as those illustrated in Figure 5A. Nevertheless, 462 

a linear regression between state-time estimated and measured values of S yielded a coefficient 463 

of determination r2 = 0.834. However, notice that about five values omitted in the calculations 464 

fall outside of the confidence interval as a result of the state-time analysis judging they did not 465 

belong to the distribution of S values used in the calculation. 466 

State-time estimates in Figure 5C made while ignoring three out of every four 467 

observations of soil water storage are definitely not reliable. A linear regression between 468 

estimated and measured values of S yielded a coefficient of determination r2 of only 0.296 and 469 

about sixteen values omitted in the calculations fall outside of the confidence interval. There are 470 

two primary reasons why the state-time estimates illustrated in Figure 5C do not agree with 471 

reality. First, during a time period of 56 days (4 lags and nearly equal to 2 months), values of soil 472 

water storage are no longer temporally related to each other during the 2-year experiment (Table 473 

1) – a requirement of state-time analyses. Second, the amounts of water that eventually drained 474 

from the 1-m soil profile from large rainfalls robustly accounted for in the state variable P 475 

occurring within time spans of 56 days could not be ignored. Note in Figures 4B, 5A, B and C, 476 
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 477 
Figure 5 - Soil water storage measured biweekly for 714 days estimated from measurements of 478 
precipitation and evapotranspiration with A. one-half, B. two-thirds and C. three-fourths of the 479 
soil water storage observations omitted from the state-time analysis. 480 
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as the relative number of ignored observations of soil water storage increased, the magnitude of 481 

the transition coefficient of Si-1 decreases with estimates of Si depending progressively on the 482 

values of Pi-1. In other words, with fewer and fewer temporal observations of Si available, 483 

reliable estimates of Si depend more and more on the temporal association between soil water 484 

storage and precipitation. This dependence is entirely reasonable inasmuch as changes in soil 485 

water storage are generally related directly to amounts of precipitation infiltrating the soil surface 486 

during relatively short time periods. Notice, however, that no such consistent trend was 487 

manifested during these short time periods by the transition coefficients of ETi-1. This fluctuation 488 

is reasonable inasmuch as changing local weather conditions can easily cause major shifts in 489 

evapotranspiration that do not impose major changes in average soil water storage. We verify the 490 

previous statement by examining Figure 6 where the mean values of evapotranspiration 491 

throughout the time being investigated are related by simple linear regression to the average 492 

amount of water stored in the soil profile. This figure indicates that measurements of 493 

evapotranspiration at any given time are not realistically estimated by the amount of water stored 494 

within the root zone of the soil profile of the coffee crop. Yet, soil water storage is generally 495 

sparingly and inadequately monitored in agricultural fields to assure that there is sufficient water 496 

within the root zone for the crop to sustain an adequate transpiration rate for optimal growth and 497 

harvestable yield. 498 

 499 

 500 
Figure 6 - Evapotranspiration measured biweekly for 714 days estimated using classical linear 501 

regression. 502 
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Rather than tediously and repetitively measuring the water stored in the soil profile to 503 

ascertain evapotranspiration across an agricultural field or even at a location designated as that 504 

representing the mean (access tube number 3 according to Fig. 3), a common practice has been 505 

the measurement of water lost from a Class A evaporation pan (Allen et al 1998). Such a 506 

procedure is convenient and inexpensive, but does not necessarily relate to quantitative measures 507 

of soil water storage at positions related to mean values for the field, or vice versa. 508 

With measurements of mean values of ET, S, and P laboriously made biweekly in this 509 

study, we are able to examine the estimation of ET made by classical multiple regression and 510 

state-time analyses. Estimations of ET using classical multiple regression based on mean values 511 

of each variable throughout the time being investigated can be compared with measured values 512 

in Figure 7A. We note that no more than 13.5% of the variance of the biweekly-measured 513 

evapotranspiration data was explained from the measurements of soil water storage and 514 

precipitation. We also note that variations of ET with a coefficient of 0.415 were more related to 515 

fluctuations of precipitation than those of soil water storage with a coefficient of only 0.095. A 516 

similar relationship was also apparent in the state-time analysis presented in Figure 7B where the 517 

transition coefficient of S was only 0.090 while that of P was larger having a value of 0.310. 518 

Estimated values of ET from the state-time analysis approached those of the measured values, 519 

and manifested a coefficient of determination of 0.887. Nevertheless, 8 of the 51 estimated 520 

values of ET fell outside the 95% confidence interval. 521 
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 522 
Figure 7 - Estimates of evapotranspiration measured biweekly for 714 days using A. classical 523 

multiple regression and B. state-time analysis. 524 

 525 
In Figure 8 where the evapotranspiration is estimated with all measurements of S and P, 526 

but with one-half and three-fourths of its biweekly measurements omitted from the state-time 527 

calculations, the coefficient of determination decreases to 0.719 and 0.544. Nine of the 51 528 

estimated values of ET in Figure 8A and 21 of the 51 estimated values of ET fell outside the 95% 529 

confidence interval. 530 
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 531 
Figure 8 - Evapotranspiration measured biweekly for 714 days estimated from measurements of 532 

soil water storage and precipitation with A. one-half and B. three-fourths of the 533 

evapotranspiration observations omitted from the state-time analysis. 534 

 535 

Noting that the contribution from neighboring values of S decreases from 9% in Figure 536 

7B to a mere 2 and 3% in Figures 8A and B, respectively, we learn that for the case of this data 537 

set from a coffee crop, the temporal variations in ET are not physically caused by variations of S. 538 

Therefore, we examine the relationships between the two state variables ET and P in Figure 9.  539 
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 540 
Figure 9 - Estimates of evapotranspiration measured biweekly for 714 days using A. classical 541 

multiple regression and B. state-time analysis. 542 

 543 
Classical regression between ET and P throughout the time of the investigation yielded 544 

a coefficient of determination of only 0.129 (Figure 9A). On the other hand, state-time estimates 545 

were much more reliable with a coefficient of determination of 0.864 (Figure 9B). We expected 546 

that the state-time analysis would be superior because ET and P are significantly cross correlated 547 

to 3 temporal lags and ET has an autocorrelation length of 3 lags. We note that each preceding 548 

value of both state variables more or less equally contribute to the estimated value of ET. By 549 

omitting one out of two values of measured ET (Figure 10A) and three out of four values of 550 

measured ET (Figure 10B) in the state-time analyses, we learn that the coefficient of 551 
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determination between estimated and measured values of ET reduces from 0.864 (Figure 9B) to 552 

0.694 and 0.554 (Figures 10A and B, respectively). Without having neighboring values of ET for 553 

the updating procedure in the calculation, the contribution from the neighboring cross correlated 554 

measured P is inadequate to capture estimates of ET within an ever-increasing confidence 555 

interval. In other words, state variables physically linked to the cause of ET fluctuations were not 556 

monitored. 557 

 558 

 559 
Figure 10 - Evapotranspiration measured biweekly for 714 days estimated from precipitation 560 

measurements with A. one-half and B. three-fourths of the evapotranspiration observations 561 

omitted from the state-time analysis. 562 
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During 14-day intervals, what physical processes in addition to precipitation alter the 563 

amount of water transpired from the crop and evaporated from the soil surface? From the above 564 

information thus provided rainfall (and to a very limited extent, soil water storage) is the only 565 

parameter that accounts for some of the 14-day variability of ET throughout each year as 566 

illustrated in Figure 11. Patterns of ET for both years are very similar, and indeed have similar 567 

spectra yielding significant coherence at several temporal frequencies not presented here. In 568 

order to identify the cause of this similarity as well as to improve estimates of evapotranspiration 569 

as a function of time, it would be necessary to measure at least one other variable or parameter 570 

physically responsible or linked to evapotranspiration – e. g., air temperature, relative humidity, 571 

cloudiness, wind velocity, soil temperature, distribution of water within the soil profile, 572 

vegetative and productive stage of the crop, insect damage, plant diseases, plant nutrient 573 

availability, mainly (Penman 1963; Allen et al. 1998). 574 

 575 

 576 

 577 
 578 

Figure 11 - Biweekly measurements of evapotranspiration during 2003-04 and 2004-05 versus 579 

time commencing the first week of September. 580 

 581 

Previous and present outlook 582 

As mentioned in the introduction, the estimation of soil water storage is a difficult task 583 

due to the spatial and temporal variability of field soils and their local environment. This 584 

presentation focused on the characterization of the average amount of water stored in the topsoil 585 
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across a specific field measured at time intervals of 14 days. Because the majority of coffee plant 586 

roots were limited to a depth of 1 m within the soil profile, soil water designated as that available 587 

to the coffee crop was calculated from soil water content measurements from the soil surface to 1 588 

m deep. The field was irrigated only when it was deemed necessary, i.e., whenever the stored 589 

water in the profile reached less than 20% of its full capacity. This irrigation strategy, embracing 590 

the concept that the spatial variation of S was invariant in time, allowed the analysis of the 591 

distribution of soil water storage measurements within the coffee field to ascertain a unique 592 

location consistently manifesting the mean soil water storage regardless of its time of 593 

measurement. And, the minimum number of locations sampled to achieve an average value 594 

within prescribed level of significance was based on the assumption that the sampled values 595 

were normally distributed. This strategy has been suggested during the past 25 years. Various 596 

other closely related strategies that include the measurement of a threshold minimum soil water 597 

storage, a specified integrated matric potential within the root zone of a plant and minimum soil 598 

water content or matric potential at a specified position within the root zone were explored and 599 

adopted since 1950 (Nielsen and Kutílek 1994). These strategies ignored the spatial distances 600 

between sampling locations, and also ignored the temporal correlations between successive soil 601 

water storage sampling campaigns. All of them sought and relied on the ability to find a "good 602 

average" to determine when to irrigate a crop. Few strategies were developed to ascertain how 603 

seldom measurements could be taken to ascertain when to irrigate for optimal crop production. 604 

As a result, published literature will testify that excessive energy and time were spent 605 

determining when to irrigate rather than to determine the relative benefit of having irrigated. 606 

Hence, the second half of this presentation focused on the temporal association of S, P, and ET at 607 

a fixed, hypothetical location assumed to represent the entire field during 14-day time intervals 608 

empirically selected for their measurement.  The results of this tedious, and time- and energy-609 

consuming sampling program indicate that the amount of water stored in the soil profile during 610 

the empirically designated 14-day interval sampling program has little to do with temporal 611 

variations of evapotranspiration. However, from locations sampled across the coffee field, it was 612 

apparent that the mean values of ET during the 14-day sampling intervals are temporally related 613 

to P, not S, and not quantitatively related to infrequent irrigations including those made in 614 

September. 615 

After completing this experiment, we are left with the question, "When and where do 616 

we take what kind of other measurements to better manage the production of coffee as well as 617 

gain information on the environmental impact on its production?" During the past two decades, 618 

the concept of site-specific farming, precision farming or precision agriculture has emerged that 619 
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emphasizes that the quality and quantity of crop production can be improved by simultaneously 620 

managing the temporal and spatial variations of crop-dependent processes across an agricultural 621 

field during crop growth. In other words, an agricultural field planted to one crop is not 622 

considered a unit to be managed or treated uniformly. Instead, based on its local soil and 623 

environmental properties, and the nature of physical and biological processes, it is managed as 624 

an ensemble of distinct spatial domains each monitored over appropriate scales of space and 625 

time. Many methods of statistical analysis (geostatistics, regionalized variable analysis, applied 626 

time series, etc.) are available for examining experimental data observed at different points in 627 

time and space relative to describing and understanding soil-plant-atmospheric processes within 628 

a farmer's field. 629 

In this presentation, we illustrated the utility of state-time analysis to examine the 630 

temporal variation of the crop-dependent process of ET. We analyzed ET considering it to be a 631 

random variable and statistically treated its temporal variation as a function of the time between 632 

repetitive observations within a 2-year domain. At any given time, its value was considered to be 633 

identical at every location within the experimental area. Although such a consideration is not 634 

realistic because ET actually varies from one location to the next throughout the entire spatial 635 

domain, it is consistent with the common practice of irrigating a field with a given amount of 636 

water or also assuming that the rain measured at a specific location falls uniformly across the 637 

field. 638 

Having briefly illustrated the utility of state-time analysis in this simple experiment to 639 

examine the temporal variation of the crop-dependent process of ET within a field, it is obvious 640 

that many related choices for meaningful field research remain open for immediate application.  641 

One such choice taken by several researchers in the past was to repetitiously make 642 

measurements of S, ET and P at the same spatial interval across the experimental area for at least 643 

one time. The benefit of state-space analysis to examine the spatial processes of these crop-644 

dependent variables at the time of their measurement should be realized by considering each of 645 

them to be a random variable treated statistically with their spatial association and variation 646 

being a function of the distance between their measurements. A spatial soil process is the change 647 

of a variable or a vector consisting of several variables across a spatial domain caused by 648 

localized conditions e.g., the spatial process of soil water storage considered across a field can be 649 

mainly influenced by spatial changes in soil type, topography, vegetation, rainfall, 650 

evapotranspiration and management. 651 

Obtaining measurements of S, ET, and P made repetitiously across an experimental area 652 

at variable spatial intervals for numerous times as presented here provides another choice. Using 653 
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two-dimensional state analysis in both time and space, a complete analysis of the progression of 654 

any or all of the three variables occurring at any location in the field at any time during the 2-655 

year experiment would be highly informative. In other words, the analysis would provide "site-656 

specific" and "time-specific" management information without the disadvantage of considering 657 

average values across the field or during each year. 658 

Still more choices could be realized when measurements of coffee plant parameters – 659 

those of locally available soil nutrient and micro-environmental conditions related to potential 660 

coffee bean yields – are repetitiously and frequently made across the field during each growing 661 

season. With this information, a two-dimensional state analysis provides quantitative guidelines 662 

during the growing season to better manage the crop within specific local field domains to 663 

achieve higher yields without a deleterious impact on soil and water resources. As a result, 664 

management of the field would be more efficient and sustainable. 665 

 666 

Conclusions  667 

Purposely following the most commonly used classical procedure of randomization to 668 

identify sampling locations within a field of small replicated plots, we compared the results of 669 

two analyses: classical statistics and one application of applied time series (state-time analysis) 670 

to examine the temporal variability of soil water storage in a coffee field. 671 

Classical statistical procedures indicated that randomly spaced estimates of S averaged 672 

across the field can be obtained with a deviation of 2% of the mean using only 4 out of the 15 673 

sampled locations. Time stability analysis of S showed that one single specified location would 674 

represent the average value of S in relation to the average of the 15 locations, and if a standard 675 

deviation is required, 4 specific locations would yield an average with a deviation of only 0.3%.  676 

In contrast to classical multiple regression analysis, the state-time analysis showed that 677 

Si was more dependent on Pi-1 (52%) than on ETi-1 (28%) and Si-1 (20%), indicating the low 678 

temporal dependence of S in relation to previous measurements. Additionally, the analysis 679 

showed that ETi was not realistically estimated from Si-1 measurements inasmuch as it was more 680 

dependent on previous estimations ETi-1 (59%), than on Pi-1 (30%) and Si-1 (9%). With P and ET 681 

easily obtained from automated weather stations, the state-time analysis indicated that S 682 

measurements made every 14 days could be reduced to monthly measurements, and that Si 683 

measurements would still be predicted with an r2 of 0.957 – significantly reducing future field 684 

work. 685 

Presently, we as well as others with whom we communicate are conducting field 686 

experiments in which measurements of S are being taken at regular intervals in two spatial 687 
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directions across a cultivated field at specified times that allow a 3-dimensional space-state-time 688 

analysis. These experiments should provide improved management without depending on 689 

traditional randomly treated small plots supposedly applicable to an entire field without any sort 690 

of experimental verification. 691 
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