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This note outlines a statistically technique to estimate rainfall depths that can be expected 

for selected probabilities or return periods. With the help of a frequency analysis on 

historical rainfall data, the magnitude of the rainfall depths can be estimated. The 

estimates are required for the design and management of irrigation and drainage projects. 

The technique is also useful for analysing time series of other agro-meteorological or 

hydrological variables. 

 

The text of this note is based on reference statistic textbooks (Haan, 1986; Snedecor and 

Cochran, 1980) and notes from the World Meteorological Organization (WMO, 1981, 

1983, 1990). To demonstrate the frequency analysis on rainfall data, multiple examples 

are worked out on time series of rainfall data extracted from the FAOCLIM databank 

(FAO, 2000).  

 

Frequency analysis requires considerable computations and careful plotting. Efficiency 

can be gained by using software such as RAINBOW. This software has been specially 

designed to carry out frequency analyses and to test the homogeneity of data sets. 

RAINBOW is freely available and an installation file and reference manual can be 

downloaded from the web (go to www.iupware.be, and select downloads and next 

software). 
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1. Rainfall variability in time 
The total rainfall received in a given period at a location is highly variable from one year 

to another. The variability depends on the type of climate and the length of the considered 

period. In general it can be stated that the drier the climate, the higher the variability of 

rainfall in time. The same hold for the length of the period: the shorter the period the 

higher the annual variability of rainfall in that period. 

 

In Figure 1 the total annual rainfall observed in Tunis (Tunisia) is plotted for the 1930 – 

1990 period. Annual rainfall varied between 220 mm (year 1943) and 912 mm (year 

1953). The average and standard deviation of the total rainfall for this 60-year period are 

respectively 466 mm and 131 mm. The average gives information on the normal amount 

of rainfall one can expect in the area. It can be used to obtain an idea of the departure of 

the annual rainfall from the normal, or to compare climatic regions. 

 

 

 
 

Figure 1. Total annual rainfall recorded in Tunis (Tunisia) for the period 1930-1990, 

with indication of the average rainfall (horizontal line) (source FAOCLIM, 2000). 
 

 

Because of the strong variability of rainfall in time, the design and management of 

irrigation water supply and flood control systems are not based on the long-term average 

of rainfall records but on particular rainfall depths that can be expected for a specific 

probability or return period. These rainfall depths can only be obtained by a thoroughly 

analysis of long time series of historic rainfall data.  
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Although time series of historic rainfall data are characterized by their average and 

standard variation, these values cannot be blindly used to estimate design rainfall depths 

that can be expected with a specific probability or return period. Applying this technique 

to a data set can produce misleading results since the actual characteristics of the 

distribution are ignored and it is assumed that they follow a particular distribution. To 

avoid this type of error, it is essential that the goodness of the assumed distribution be 

checked before design rainfall depths are estimated. 

 

 

 

2. Probability of exceedance and return period 
 

2.1 Rainfall depths expected for specific probability (XP) 
Estimates of rainfall depths (XP) or intensities that can be expected for a specific 

probability during a specific reference period (hour, day, week, 10-day, month, year) are 

required for the management and design of irrigation and drainage projects. In this note 

the probability refers to the probability of exceedance and it specifies the likelihood that 

the actual rainfall during that period will be equal to or higher than the estimated rainfall 

depth XP. Since the rainfall depth XP is the amount of rain that can be expected or might 

be exceeded in a given period for a specific probability, it refers to the minimum amount 

of rain one can rely on during the reference period, and therefore is often denoted as 

‘dependable rainfall’ in irrigation sciences. 

 

 

2.2 Probability of exceedance (PX) 
The probability of exceedance refers to the probability of the occurrence of a rainfall 

depth greater than some given value XP. The probability of exceedance (PX) is expressed 

as a fraction (on a scale ranging from zero to one) or as a percentage chance with a scale 

ranging from 0 to 100 percent. If the estimates refer to the rainfall depth that can be 

expected or might be exceeded in a year during the reference period than it can be 

expressed as a set number of years out of a total number of years.  

 

If 4.8 mm is the 10-day rainfall depth that can be expected on average in 8 years out of 10 

during the first decade of January in Tunis, than is 4.8 mm the 80% dependable annual 

rainfall for that decade. As the rainfall amount increases, its probability of exceedance 

decreases. For Tunis, 12.2 mm is the 50% and 23.0 mm is the 20% dependable rainfall 

for the first decade of January. 

 

 

2.3 Return period (TX) 
The return period (also called the recurrence interval) TX is the period expressed in 

number of years in which the annual observation is expected to return. It is the reciprocal 

value of the probability when expressed as a fraction: 
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The above 20% dependable rainfall (PX = 0.20) has a return period of (1/(0.20) =) 5 

years. Or on average once every 5 years the rainfall in the 1
st
 decade of January will be 

larger than 23 mm in Tunis. The 50% dependable rainfall has a return period of 2 years, 

or on average once every 2 years the rainfall depth is exceeded. 

 

 

2.4 Probability of exceedance for design purposes 
The selection of the probability of exceedance (PX) or return period (TX) for design 

purposes is related to the damage the excess or the shortage of rainfall may cause, the risk 

one wants to accept and the lifetime of the project. The following examples illustrate the 

selection of the probability: 

- The design of an open shallow drainage system in sloping land in Western Europe 

is based on a design storm (often a 6-hour storm) that has a return period of 10 to 25 

years for agricultural land and 30 to 100 years for urbanized basins (Smedema and 

Rycroft, 1983). The design norm determines the reliability of the system in terms of 

flooding. The design storm is the 6-hour rainfall that has a probability of exceedance 

of 4 to 10 % for agricultural land and only 1 to 3 % for urbanized basins.  

- On the other hand, low dependable rainfall depths are used when designing 

irrigation systems. Rainfall depths that are exceeded in 3 out of 4 years or 4 out of 5 

years during the peak period are often selected as design rainfall (Doorenbos and 

Pruitt, 1977). The corresponding probabilities of exceedance are high and 

respectively 75% and 80%. A higher level of dependable rainfall, say 9 years out of 

10, may even be selected for high value crops. Selecting the 90% dependable rainfall 

as the design norm will result in a lower risk but in bigger canals or larger pipes.  

The design rainfall is thus and economic parameter and its selection essential involves the 

optimisation of the expected benefits in relation to the costs. 

 

 

2.5 Probabilities of exceedance for management purposes 
Information on the rainfall depth that can be expected in a specific period under various 

weather conditions is required for management and planning purposes. FAO (Smith, 

1992) uses the following rules for the determination of dry, normal and humid weather 

conditions:  

- The weather condition in a period is called dry if the rainfall received during that 

period will be exceeded 4 out of 5 years, i.e. having a probability of exceedance of 

80%; 

- The rainfall in a period is normal, if the rainfall received during that period will be 

exceeded in 1 out of 2 years. The probability of exceedance is equal to 50%; 

- The weather condition in a period is called humid if the rainfall received during 

that period is exceeded 1 out of 5 years, i.e. having a probability of exceedance of 

20%. 
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The rainfall depths for Tunis for each of the 36 decades that can be expected with a 80, 

50 and 20% probability of exceedance are plotted in Figure 2. The rainfall depths 

correspond with the amount of rain that can be expected in each of the decades when the 

weather conditions are respectively dry, normal and humid. 

 

 
Figure 2. Rainfall depths for Tunis expected in a decade  

for dry, normal and humid weather conditions 

 
 

 

3. Time series of rainfall data 
In a frequency analysis, estimates of the probability of occurrence of future events are 

based on the analysis of historical rainfall records. By assuming that the past and future 

data sets are stationary and have no apparent trend one may expect that future time series 

will reveal frequency distributions similar to the observed one. It is obvious that the 

longer the data series the more similar the frequency distribution will be to the probability 

distribution. In short series accurate determination for rainfall depths that can be expected 

for selected return periods is not possible. Estimates of dependable rainfall are less 

reliable if the corresponding return period exceeds the observation period. As the number 

of observations increases, the error in determining expected rainfall gradually diminishes. 

Although the required length of the time series depends on the magnitude of variability of 

the precipitation climate, a period of 30 years and over normally is thought to be very 

satisfactory. However, if interest lies in extreme rainfall events, larger number of years 

will be required. 
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The basis of all statistical analysis is that the data series must be composed of random 

variables selected from a single population usually infinite in extent. Therefore, rainfall 

records from a climatic station should be carefully checked for homogeneity, or in other 

words, it should be checked if the collected observations are from the same population. If 

there is an apparent trend in time, the observation period should be restricted to the period 

where the data is homogeneous and representative for the planned use. A test for 

homogeneity of time series is presented in Section 5 of this note and an example of a long 

rainfall record where two, statically significant, distinct periods can be distinguished is 

presented in Section 6.4 (Detecting shifts in the total annual rainfall). 

 

When hydrological data sets are analysed an extreme event might be present that appear 

to be from a different population. In probability plots such an outlier will plot far off the 

line defined by the other points. Such an outlier has to be excluded from the analysis 

unless some historical information is available about its probability of exceedance.  

 

 

 
4. Frequency analysis and probability plotting 
From a frequency analysis, the estimates of rainfall depths for selected probabilities or 

return periods required for the design can be obtained. The analysis consists in collecting 

historical data over a sufficient number of years and subsequently: 

- ranking the data and assigning plotting positions by estimating the probability of 

exceedance with one or another method; 

- selecting a distributional assumption and plotting the data in a probability plot; 

- verifying the goodness of the selected distribution. If unsatisfactory another 

distribution should be selected or the data should be transformed so that the 

transformed data follow the selected distribution; 

- determining rainfall depths (XP) that can be expected for selected probabilities or 

return period from the probability plot. 

 

 

4.1 Estimation of the probability of exceedance 
The first step in the frequency analysis is the ranking of the rainfall data. After the 

rainfall data are ranked, a serial rank number (r) ranging from 1 to n (number of 

observations) is assigned. Subsequently the probability have to be determined that should 

be assigned to each of the rainfall depths. If the data are ranked in descending order, the 

highest value first and the lowest value last, the probability is an estimate of the 

probability that the corresponding rainfall depth will be exceeded. When data are ranked 

from the lowest to the highest value, the probability refers to the probability of non-

exceedance. Hence the probabilities are estimates of cumulative probabilities. They are 

formed by summing the probabilities of occurrence of all events greater then (probability 

of exceedance) or less than (probability of non-exceedance) some given rainfall depth. 

Since these probabilities are unknown the probabilities of exceedance have to be 

estimated by one or another method. Several methods are listed in Table 1. The Weibull, 
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Sevruk and Geiger, and the Gringorten methods are theoretically better sound. The 

probabilities will be the plotting positions of the ranked rainfall data in the probability 

plot. 

 

 

Table 1. Methods for estimating probabilities of exceedance or non-exceedance of 

ranked data, where r is the rank number and n the number of observations. 

Method Estimate of probability of 

exceedance or non-exceedance 

(%) 

California 

(California State Department, 1923) n

r
 100 

Hazen 

(Hazen, 1930) n

r )5.0( −
 100 

Weibull 

(Weibul, 1939) )1( +n

r
 100 

Gringorten 

(WMO, 1983) )12.0(

)44.0(

+

−

n

r
 100 

Sevruk and Geiger 

(Sevruk and Geiger, 1981) 

( )

( )
100

4/1

8/3

+

−

n

r
 

 

 

To demonstrate the calculation procedure, the annual total rainfall for the 37-year period 

1960 - 1996 for Bombay (India) is extracted from the FAOCLIM database (FAO, 2000). 

The rainfall data are listed in Annex 1 (Table A1.1). Since data for 4 years are missing 

there are only 33 observations (n = 33) in the time series. The 33 annual total rainfall 

depths were subsequently ranked from high to low and the corresponding probabilities of 

exceedance were estimated with various methods (Table 2). It can be noted that all of the 

relationships give similar values near the centre of the distribution but may vary 

somewhat in the tails. 
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Table 2. Probabilities of exceedance of the ranked annual rainfall estimated with 

various methods. 

Estimate of probability of exceedance PX  Ranked 

rainfall 

X 

(mm) 

Rank 

number 

r 
Hazen 

 

(%) 

Weibull 

 

(%) 

Gringorten 

 

(%) 

Sevruk & 

Geiger 

(%) 

3107 

2791 

2626 

2620 

2469 

2444 

2441 

2423 

2382 

2373 

2370 

2316 

2205 

2141 

2119 

2031 

2029 

2026 

1964 

1937 

1923 

1900 

1882 

1850 

1835 

1832 

1629 

1560 

1553 

1540 

1511 

1287 

960 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

1.5 

4.5 

7.6 

10.6 

13.6 

16.7 

19.7 

22.7 

25.8 

28.8 

31.8 

34.8 

37.9 

40.9 

43.9 

47.0 

50.0 

53.0 

56.1 

59.1 

62.1 

65.2 

68.2 

71.2 

74.2 

77.3 

80.3 

83.3 

86.4 

89.4 

92.4 

95.5 

98.5 

2.9 

5.9 

8.8 

11.8 

14.7 

17.6 

20.6 

23.5 

26.5 

29.4 

32.4 

35.3 

38.2 

41.2 

44.1 

47.1 

50.0 

52.9 

55.9 

58.8 

61.8 

64.7 

67.6 

70.6 

73.5 

76.5 

79.4 

82.4 

85.3 

88.2 

91.2 

94.1 

97.1 

1.7 

4.7 

7.7 

10.7 

13.8 

16.8 

19.8 

22.8 

25.8 

28.9 

31.9 

34.9 

37.9 

40.9 

44.0 

47.0 

50.0 

53.0 

56.0 

59.1 

62.1 

65.1 

68.1 

71.1 

74.2 

77.2 

80.2 

83.2 

86.2 

89.3 

92.3 

95.3 

98.3 

1.9 

4.9 

7.9 

10.9 

13.9 

16.9 

19.9 

22.9 

25.9 

28.9 

32.0 

35.0 

38.0 

41.0 

44.0 

47.0 

50.0 

53.0 

56.0 

59.0 

62.0 

65.0 

68.0 

71.1 

74.1 

77.1 

80.1 

83.1 

86.1 

89.1 

92.1 

95.1 

98.1 

Total number of observations: n = 33 

Mean annual rainfall: X = 2063 mm 

Standard deviation: s = 453.2 mm 



 10 

4.2 Probability plot 
A probability plot is a plot of the rainfall depths versus their probabilities of exceedance 

as determined by one or another method (Figure 3). When the data are plotted on 

arithmetic paper, where both axes have a linear scale, the data are not likely to be on a 

straight line but to follow a S-shaped curve. This plot is sometimes called a percentage 

ogive.  

 

 

 
Figure 3. Probability plot of the total annual rainfall for Bombay  

by using linear scales for both axes. 
 

 

By selecting a probability distribution, the vertical axis of the probability plot is rescaled 

so that the data will fall on a straight line if it is distributed as selected (Figure 4). On 

probability paper the cumulative distribution of the total population will fall on that 

straight line. This makes the verification of the goodness of selected distribution easier. 

Figure 4 refers to a normal distribution, but the same is true for other distributions. Only 

the rescaling of the vertical axis will be different. 
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 rescale probability axis by selecting a probability distribution 
 

 
Figure 4. Effect of the rescaling of the vertical axis of a probability plot  
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If the data in a probability plot fall in a reasonable alignment, it may be assumed that the 

data can be approximated by the assumed distribution. Since the data is only a sample of 

the total population it would be rare for a set of data to plot exactly on a line and a 

decision must be made as to whether or not the deviations from the line are random 

variations or represent true deviations indicating the data does not follow the given 

probability distribution. By fitting a line through the points an indication of the goodness 

of fit is given by the coefficient of determination (R
2
) of the fitted line. Owing to 

sampling variations, the points will depart somewhat from the line even with data that 

follow perfectly the assumed distribution. 

 
When probability plots are made and a line drawn through the data, the tendency to 

extrapolate the data to extreme probabilities of exceedance is great. However, if the data 

do not truly follow the assumed distribution, the error in extrapolation can be quite large. 

This is the result of the presence of a large number of data points in the central part of the 

distribution that strongly determines the slope of the line. The few data points in the tail 

of the distribution hardly affect the slope of the line (see for example Figure 5). 

 

Probability plotting is an excellent graphical technique for testing distributional 

assumptions. When the points in the probability plot do not fall in a reasonable 

alignment, the data is most likely not distributed as the selected distribution, especially if 

the points deviate from the straight line in some systematic matter. The extent and types 

of departures from the assumed distribution might give information on a more 

appropriate distribution. One can either rescale the abscissa of the probability plot (See 

normalizing the data, Section 4.3.3) or select another distribution. 
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4.3 Normal distribution 
Hydrologic random variables, which are the sum of a large number of independent 

effects, are often normally distributed. The yearly rainfall, being the sum of many 

individual rainfall events, is a typical example. It has been found that 80% of the stations 

with long records receive rainfall according to a normal distribution.  

 

4.3.1 Probability plot 
By plotting the data on specially designed normal probability paper (Annex 3), the 

assumption that the data is normal distributed can be easily checked. In normal 

probability paper the probability scale (i.e. the vertical axis) is stretched at both ends and 

compressed in the centre. The distortion is such that in the probability plot the points 

should plot perfectly on a straight line if the data is normal distributed (Figure 4). Or the 

typical S shaped curve on arithmetic paper is stretched to a straight line on normal 

probability paper.  

 

In Figure 5, the annual rainfall of Bombay is plotted versus its probability of exceedance 

(estimated with the Weibull formula) on normal probability paper. Since the data in the 

probability plot fall in a reasonable alignment, it may be assumed that the annual total 

rainfall in Bombay is normal distributed.  

 

 
Figure 5. Probability plot on normal probability paper 

of the total annual rainfall for Bombay  

with indication of the best fitted line (full line) and the normal line (dotted line) 
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4.3.2 Estimating rainfall amounts for selected probabilities 
 

Graphical solution: 
By fitting a straight line through the points, the rainfall corresponding to various 

probabilities of exceedance are easily derived from the probability plot. The goodness of 

fit can be evaluated by the coefficient of determination (R
2
). Estimates of the annual total 

rainfall XP for Bombay for selected probabilities of exceedance derived from the fitted 

line (R
2
 = 0.98) are presented in column 3 of Table 3. The return periods TX specified in 

column 2 are the reciprocal of the probabilities of exceedance PX and hence refer to 

rainfall depths greater than the estimated depths in column 3. In column 4 probabilities of 

non-exceedance (i.e. 100 – PX) are presented. The return periods corresponding with the 

probabilities of non-exceedance are specified in column 5. They refer to occurrence of 

rainfall depths less than the estimated depths XP in column 3. 

 

 

Table 3. Estimated annual rainfall for Bombay for selected probabilities and return 

periods derived from the fitted line in the probability plot (Figure 5). 

Probability of 

exceedance 

PX 

(%) 

Return  

Period 

TX 

(years) 

Estimated 

annual rainfall 

XP 

(mm) 

Probability of 

non-exceedance 

100-PX 

(%) 

Return  

Period 

 

(years) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

10 

5 

3.33 

2.50 

2 

1.67 

1.43 

1.25 

1.11 

2686 

2472 

2318 

2186 

2063 

1940 

1808 

1654 

1440 

90 

80 

70 

60 

50 

40 

30 

20 

10 

1.11 

1.25 

1.43 

1.67 

2 

2.50 

3.33 

5 

10 

 

 

Numerical solution: 
When annual rainfall is completely normal distributed the data in a probability plot will 

fall perfectly on the normal line. On this line the mean rainfall ( X ) corresponds with the 

50 percent probability of exceedance, the X + s (standard deviation) corresponds with 

15.87 % and the X -s with the 84.13 % probability of exceedance (Figure 4). Since the 

normal distribution is completely characterized by its average and standard deviation, 

they can be used to estimate rainfall for selected probabilities or return periods:  

 

skXX P ±=  

 

where XP is the rainfall depth having a specific probability of exceedance, X  is the 

sample mean, s the standard deviation and k a frequency factor. The sign and magnitude 
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of the frequency factor vary according to the selected probability of exceedance (Annex 

2, Table A2.1).  

 

For the example of the annual total rainfall in Bombay, the sample mean is 2063 mm and 

the standard deviation 453.2 mm. As can be observed in Figure 5, the fitted line is not 

exactly the same as the normal line. Hence the estimated rainfall depths for selected 

probabilities or return period derived from the graphical solution (Table 3) will be 

slightly different from the rainfall depths obtained by the numerical solution (Table 4). 

The difference in both lines is caused by the sampling size. If the annual total rainfall in 

Bangkok is normal distributed, the two lines becomes identical when the sample size gets 

very large. 

 

 

Table 4. Estimated annual rainfall for Bombay for selected probabilities and return 

periods obtained by the numerical solution. 

Estimated 

annual rainfall 

(mm) 

Probability of 

exceedance 

PX 

 

(%) X  ± k s XP 

Return  

Period 

TX 

 

(years) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

   2063 + 1.28 (453.2) = 

   2063 + 0.84 (453.2) = 

   2063 + 0.53 (453.2) = 

   2063 + 0.255 (453.2) = 

   2063 + 0 (453.2) = 

   2063 - 0.255 (453.2) = 

   2063 - 0.53 (453.2) = 

   2063 - 0.84 (453.2) = 

   2063 - 1.28 (453.2) = 

2643 

2444 

2303 

2179 

2063 

1947 

1823 

1682 

1483 

10 

5 

3.33 

2.50 

2 

1.67 

1.43 

1.25 

1.11 

 

 
 

4.3.3 Normalizing data (transformation of data) 
Since dealing with a normal distribution has several practical advantages, it is common 

practice to transform data that are not normally distributed so that the resulting 

normalized data can be presented by the normal curve. The transformation of the data 

will change the scale of the records (i.e. the abscissa of the probability plot). 

 

For positively skewed data a transformation can be used to reduce higher values by 

proportionally greater amounts than smaller values. This transformation will rescale the 

magnitude of the records and the transformed data might be closer to the normal 

distribution than the original data. This is illustrated in Figure 6, were positively skewed 

rainfall data was transformed to normality by rescaling the horizontal axis. By plotting 

the transformed data on a linear scale a normal distribution is obtained. 
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Figure 6. Transformation of positively skewed rainfall data. 
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Operators to rescale the data are (Figure 7): 

- square root (resulting in a fairly moderate transformation) 

- cube root 

- logarithm (resulting in a substantive transformation) 

Figure 7. Effect of the transformation of data by several mathematical operators  

on the scaling of the horizontal axis. 
 

 
Figure 8. Probability plot of the September rainfall for Bombay. 
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Rainfall data for short periods (pentade (5-day), week, decade (10-day), month) are often 

not normally distributed but positively skewed. There is a relative high frequency of low 

rainfall below the mean and only a relative small numbers of high precipitations. This 

positive skew is one of the characteristics of the statistical distribution of rainfall data for 

short periods.  

 

 The mean rainfall in September in Bombay for example for the period 1960 – 1994 

(Annex 1, Table A1.1) is not normal distributed. The mean monthly value is 295 mm. 

From the 35 observations, 19 are below and 16 are above the mean. The arithmetic mean 

is hence not the centre of the distribution. The fact that a straight line cannot be easily 

fitted through the points in the probability plot (Figure 8), indicates that the monthly 

rainfall is not normal distributed. 

 

By taking the square root of the monthly rainfall, the data can be normalized. This is 

illustrated in Figure 9 by plotting the probability of the square root of the monthly rainfall 

data in a probability plot. The problem of line fitting is solved and the data fall in a 

reasonable alignment. The Figure reveals that the square root of the September rainfall of 

Bombay is normal distributed.  

 

 
Figure 9. Probability plot of the square root of the September rainfall for Bombay 

on normal probability paper. 
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Table 5. Estimated rainfall for September in Bombay for selected probabilities and 

return periods derived from the probability plot (Figure 9). 

Estimated rainfall Probability of exceedance 

 

PX 

(%) 

Square root 

√XP 

Monthly rainfall 

XP 

(mm) 

Return period 

 

TX 

(years) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

23.6 

21.1 

19.2 

17.7 

16.2 

14.8 

13.2 

11.4 

8.9 

576 

455 

376 

315 

263 

216 

170 

123 

71 

10 

5 

3.33 

2.50 

2 

1.67 

1.43 

1.25 

1.11 

 

4.3.4 Data sets with zero rainfall 
For months at the onset or cessation of the rainy season, or for small periods such as 

weeks or 10-day periods, rainfall data might be zero or near zero in some of the years. As 

such the rainfall data is bounded on the left by zero or near zero values. If the occurrence 

of low rainfall is high, the frequency distribution becomes severely skewed.  

 
Figure 10. Probability plot of the October rainfall for Bombay  

on normal probability paper. 
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October in Bombay is a month in transition between the rainy and dry season. When the 

rainy season starts early, the rainfall in October might be important, but when the onset is 

late, the monthly rainfall might be zero or small. In the period 1960 – 1996, the rainfall is 

zero or small (< 10 mm) in 8 out of the 37 years i.e. in 22% of the years (Annex 1, Table 

A1.1). The data of the total time series are hence not normal distributed (Figure 10). 

 

A method to analyse time-series with zero or near zero rainfall (the so called nil values) is 

to separate temporarily the nil values from the non-nil values. By excluding the nil’s from 

the frequency analysis, the frequency distribution becomes less skewed to the left, and 

the data can be analysed. Figure 11 indicates that the logarithms of the non-nil values are 

normal distributed. The logarithms of the monthly rainfall plot more or less on a straight 

line in the probability plot. Although from this graph the probability of various levels of 

rainfall can be estimated, the results will be seriously biased since years with nil rainfall 

are ignored. 

 

 
Figure 11.  Probability plot of the logarithm of the non-nil October rainfall for 

Bombay on normal probability paper. 
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By calculating the global probability, the nil and no-nil rainfall can be combined. The 

global probability is calculated by 

 

)()1()( xFpxG XX −=  

 

where GX(x) is the cumulative probability distribution of all X (prob(X ≥ x) for X ≥ nil), 

p is the probability that X is nil, and FX(x) is the cumulative probability distribution of 

the non-nil values of X (i.e. Prob(X ≥ nil) for X > nil).  

 

The global distribution is a mixed distribution with a finite probability that X = nil and a 

continuous distribution of probability for X > nil. An example for the October rainfall is 

worked out in Table 6. 

 

 

Table 6. Estimated rainfall for October in Bombay for selected probabilities and 

return periods derived from the probability plot of the non-nil values (Figure 11) 

and the probability (p = 0.22) that rainfall is zero or near zero (nil). 

Global 

Probability 
GX 

(%) 

 Estimated 

Rainfall 
XP 

(mm) 

Return 

Period 
TX 

(years) 

 Non-nil values (Figure 11)   

 FX = 

GX/(1-p) 

Log(X) X   

0 

10 

20 

30 

40 

50 

60 

70 

78 

0 

12.8 

25.6 

38.3 

51.0 

63.8 

76.6 

89.3 

100 

… 

2.215 

2.021 

1.876 

1.745 

1.613 

1.462 

1.253 

… 

… 

164 

105 

75 

56 

41 

29 

18 

… 

… 

164 

105 

75 

56 

41 

29 

18 

(nil) 

∞ 

10 

5 

3.33 

2.5 

2 

1.67 

1.43 

1.28 

  

 

Nil values (p = 22%) 

  

78 

80 

90 

100 

  

≤10 

(nil) 

1.28 

1.25 

1.11 

1 
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4.4 Estimates of extreme rainfall (Gumbel distribution) 
Estimates of extreme rainfall depths or intensities are required for the design of drainage 

or sewer systems. Therefore the annual maximum series, which is the set of maximum 

values observed during a period (minute(s), hour(s) or day) in each year, are analyzed. 

Several distribution functions can be selected to estimate extreme rainfall during the 

considered period. The Gumbel distribution which is skewed often gives satisfactory 

results. 

 

As an example the annual maximum daily rainfall recorded in 24 hours in Uccle 

(Brussels) over the 50-year period from 1934 to 1983 has been analysed. In Annex 1 

Table A1.2 the annual maximum daily rainfall as reported by Demarée (1985) are listed. 

In Figure 12 the probability plot is given. The cumulative probabilities were calculated by 

means of the Gringorten method. Values of annual daily maximum rainfall derived from 

the probability plot estimated by the Gumbel distribution function are listed in Table 7. 

 

 

 
Figure 12. Probability plot of the annual daily maximum rainfall for Brussels on 

Gumbel probability paper. 
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Table 7. Estimated annual daily maximum rainfall for Uccle (Brussels, Belgium)  for 

selected probabilities and return periods derived from the probability plot (Figure 

12). 

Probability of exceedance 

(%) 

Annual daily maximum rainfall 

(mm) 

Return period 

(years) 

5 

10 

20 

50 

62.1 

54.9 

47.3 

35.9 

20 

10 

5 

2 

 

 

 

As for the normal distribution a series of annual maxima can be analyzed also 

numerically by considering the mean X  and standard deviation s of the observed series 

of extremes: 

 

skXX P ±=  

 

where XP is the rainfall depth that can be expected for a specific probability and k is the 

frequency factor dependent upon the sample size n and the required return period or 

probability of exceedance. Values for k are presented in Annex 2, Table A2.2. 

 
 
 

 

4.5 Other distributions 
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5. Homogeneity test of time series 
Frequency analysis of rainfall data requires that the data be homogeneous and 

independent. The restriction of homogeneity assures that the observations are from the 

same population. One of the test of homogeneity (Buishand, 1982) is based on the 

cumulative deviations from the mean: 

 

( )∑
=

=−=
k

i

ik nkXXS
1

,...,1  

 

where Xi are the records from the series X1, X2, …, Xn and X  the mean. The initial value 

of Sk=0 and last value Sk=n are equal to zero (Figure 13). When plotting the Sk’s 

(sometimes called a residual mass curve) changes in the mean are easily detected. For a 

record Xi above normal the Sk=i increases, while for a record below normal Sk=i decreases. 

For a homogenous record one may expect that the Sk’s fluctuate around zero since there 

is no systematic pattern in the deviations of the Xi’s from their average value X .  

 

To test the homogeneity of the data set, the cumulative deviations are often rescaled. This 

is obtained by dividing the Sk’s by the sample standard deviation value (s). By evaluating 

the maximum (Q) or the range (R) of the rescaled cumulative deviations from the mean, 

the homogeneity of the data of a time series can be tested: 

 









=

s

S
Q kmax  

 









−







=

s

S

s

S
R kk minmax  

 

High values of Q or R are an indication that the data of the time series is not from the 

same population and that the fluctuations are not purely random. Critical values for the 

test-statistic which test the significance of the departures from homogeneity are presented 

in Table 8. The percentage points in this table are based on 19,999 synthetic sequences of 

Gaussian random numbers. 

 

Table 8. Percentage points of Q/√n and R/√n for rejecting the homogeneity of time 

series with a 90, 95 and 99 % probability (Buishand, 1982). 

Q/√n R/√n Sample Size 

n 90% 95% 99% 90% 95% 99% 

10 

20 

30 

40 

50 

100 

∞ 

1.05 

1.10 

1.12 

1.13 

1.14 

1.17 

1.22 

1.14 

1.22 

1.24 

1.26 

1.27 

1.29 

1.36 

1.29 

1.42 

1.46 

1.50 

1.52 

1.55 

1.63 

1.21 

1.34 

1.40 

1.42 

1.44 

1.50 

1.62 

1.28 

1.43 

1.50 

1.53 

1.55 

1.62 

1.75 

1.38 

1.60 

1.70 

1.74 

1.78 

1.86 

2.00 
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In Figure 13 the cumulative deviations from the mean of the total annual rainfall data for 

the (complete) time series 1940 – 1987 for Bombay are plotted. In this graph, the 

vertical-axis is rescaled and lines presenting various probabilities with which the 

homogeneity of the data can be rejected are plotted. Since the rescaled Sk’s fluctuate 

around zero and are far off the lines where the homogeneity is rejected, the data of the 

time series can be considered as homogeneous. 

 

 

 
 

Figure 13. Rescaled cumulative deviations from the mean  

for the total annual rainfall for Bombay for the time series 1940 – 1987.  

When the deviation crosses one of the horizontal lines the homogeneity of the data 

set is rejected with respectively 90, 95 and 99% probability. 
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6. Practical Applications 
 

6.1 Estimating the likelihood of the occurrence of an event 
By means of a frequency analysis the likelihood of the occurrence of an event can be 

easily estimated. As an example it is checked if the summer in central Belgium was 

exceptionally dry in 2003. Therefore rainfall data was extracted from the FAOCLIM 

databank (FAO, 2000) for Uccle (Brussels). The databank contains time series of 164 

years (from 1833 to 1996) of monthly data for this weather station. Since the rainfall 

record for one of the years (1989) is incomplete, that year is excluded from the analysis. 

The summer rainfall for each of the years is obtained by adding up the monthly rainfall 

for 4 months: June, July, August and September. The average summer rainfall for the 

time series of the 163 years is 283.7 mm and its standard deviation is 66.08 mm. 

 

 
 

Figure 14. Homogeneity test for the time series 1833-1996  

of summer rainfall for Uccle (Brussels, Belgium). 
 

 

Before analysing the data it was checked if the summer rainfall for the time series is a 

homogeneous dataset. The homogeneity test for the time series indicated that there is no 

systematic pattern in the deviations of the summer rainfalls from their mean (Figure 14). 
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Subsequently it was graphically checked if the data are normal distributed. The 

probability plot (Figure 15) indicates that the data is normal distributed.  

 

 
Figure 15. Probability plot of the summer rainfall for Uccle (Brussels, Belgium) on 

normal probability paper with indication of the rainfall recorded in 2003. 
 

The summer rainfall for 2003 was only 182 mm. By plotting the value on the probability 

plot, it is evident that the summer in that year was indeed rather dry. The probability that 

the value is exceeded is 94%, or this means that less rainfall occurs only on average in 6 

out of 100 years or the probability of non-exceedance is 6%. The return period for which 

the summer rainfall is less than the one in 2003 is (1/0.06 =) 16.7 years. According to the 

classification of meteorological events used by the Royal Meteorological Institute of 

Belgium, the summer rainfall in 2003 was very abnormal but not yet exceptional (Table 

9). 

 

 

Table 9. Classification of meteorological events used by the Royal Meteorological 

Institute of Belgium. 
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6.2 Classification of the actual weather conditions for guiding 

irrigation in real time 
Irrigation charts (Annex 4) can help farmers in their day-to-day decisions (Raes et al., 

2000 and 2002). The chart guides the user in the adjustment of the irrigation interval to 

the actual weather conditions throughout the growing season. Since the objective of the 

irrigation chart is to give farmers guidelines for the adjustment of their irrigation 

calendars to the actual weather conditions, the development of the irrigation calendars 

requires information on rainfall and evapotranspiration levels that can be expected with 

various probabilities. The rainfall and evapotranspiration depths are derived statistically 

from long records of historical 10-day rainfall and reference evapotranspiration (ETo). 

By combining various probability levels of ETo and rainfall, four weather conditions are 

distinguished (Table 10) for which an irrigation advice will be formulated with the help 

of a soil water balance model. The various levels of ETo and Rainfall for Harare 

(Zimbabwe) considered in the irrigation chart (Annex 4) are plotted in Figure 16. 

  

Table 10. The four distinguished weather conditions in irrigation charts (Annex 4). 

Probability level of exceedance Weather condition 

ETo Rain 

Hot and dry 

Dry 

Normal 

Wet 

20 % 

40 % 

50 % 

60 % 

100 % (No rain) 

80 % 

50 % 

20 % 

 

 
Figure 16. Estimated 10-day Rainfall and ETo levels 

for selected probabilities of exceedance for Harare (Zimbabwe). 
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6.3 Intensity-duration-frequency (IDF) curves 
Estimates of precipitation intensity for selected return periods are often required for the 

design of sewer or surface drainage systems. Reliable estimates can only be obtained 

from a frequency analysis of long time series. Such long time series are available at the 

Royal Meteorological Institute at Uccle (Brussels, Belgium) which recorded during more 

than 100 years the rainfall with the help of a recording raingauge (Demarée et al., 1998).  

 

From a 101 years time series (1898-1998) of the 10-minute precipitation depths, the 

maximum value in each year for various time periods (ranging from 10 minutes to several 

days) were determined. The annual maximum series were subsequently analysed with the 

help of the Gumbel distribution. The expected annual maximum rainfall intensities 

(recorded depth over time) during the considered time periods were determined for 

selected return periods. The results are quite reliable since the study is based on 

observation data from a long time series and on homogeneous sets of data recorded by a 

single, accurate and well-maintained precipitation gauge. The results, the so-called IDF 

(intensity-duration-frequency) curves are plotted in Figure 17 by using logarithmic scales 

for both axes. In DDF (depth-duration-frequency) curves the total rainfall depth instead 

of the intensity is plotted. 

 

 
 

Figure 17. Intensity-Duration-Frequency (IDF) curves for annual rainfall in Uccle 

(Brussels, Belgium), for selected return periods (source Delbeke, 2001). 
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6.4 Detecting shifts in the total annual rainfall 
Cumulative deviations from the mean are often used to analyse the homogeneity of time 

series. By plotting the deviations in function of time, strong deviations from the mean can 

be easily detected. These deviations can be the result of the installation of new recording 

equipment, altering the position of the equipment or a shift in the climate.  

 

A shift has been detected in the precipitation climate of the Sahelian zone of West Africa 

and is described by several authors (Demarée, 1987; Vannitsem and Demarée, 1991). As 

an illustration rainfall data of Saint-Louis (North of Senegal) has been extracted from the 

FAOCLIM database. In Figure 18, the cumulative deviations from the mean of the total 

annual rainfall data from 1930 to 1993 are plotted. The homogeneity test clearly reveals 

the major pattern of the Sahelian precipitation climate. The most striking feature is the 

clear change of slope in the year 1969. Over the period 1930 – 1969 the total annual 

rainfall was above normal while over the period 1970 – 1993 the rainfall is below normal 

rainfall.  

 

 

 
 

Figure 18. Rescaled cumulative deviations from the mean for the total annual 

rainfall for SaintLouis (Senegal) for the time series 1930-1993.  

The horizontal lines present the 90, 95 and 99% probability with which the 

homogeneity of the data is rejected. 
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The reference period 1930 – 1993 can be split up into two statistically significant periods 

different in the mean: 1930 – 1969 with a mean annual rainfall of 355 mm and 1970 – 

1993 with a mean of 211 mm (Figure 19). The jump in the mean between the years 

1969/1970 separates the two periods.  

 

 
 

Figure 19. Two statistically significant distinct periods in the precipitation climate of 

Saint-Louis (Senegal), with indication of the total annual rainfall data for the two 

time series (asterisks and circles) and their corresponding means (horizontal lines). 
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7. RAINBOW software 
RAINBOW (Raes et al., 1996) is a software tool designed to study agro-meteorological 

or hydrologic records by means of a frequency analysis and to test the homogeneity of 

the record. The program is especially suitable for predicting the probability of 

exceedance of either low or high rainfall events, both of which are important parameters 

for the design and management of irrigation systems, drainage network, and reservoirs. 

The software is freely available on the web. To DOWNLOAD go to 

http://www.iupware.be and select downloads and next software.  

 

 
Figure 20. Structure of the RAINBOW program 

 

The hierarchical structure of the program is presented in Figure 20. From the Main Menu 

the user has access to: 

- the Data Management menu to select an existing or to create a new data set,  

- the Homogeneity test menu for testing the homogeneity of the data set,  

- the Frequency analysis menu for analysing the data set (Figure 21), 

- the Setting menu where specific program parameters can be set. 

 

The analysis starts with the selection or creation of a data file in the Data Management 

menu. In stead of creating files when running RAINBOW, the user can also directly add, 

update and delete files in the subdirectory as long as the user respects the structure and 

extension of the files (Annex 5).  
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By selecting Setting in the Main menu the user can 

- exclude outliers from the data analysis; 

- specify the value for nil when analysing data sets with near zero rainfall; 

- split time series in two periods when the homogeneity of the total record is 

rejected. 

 

 

 
 

Figure 21. Pages of the Frequency analysis menu. 
 

The information available on the different pages of the Frequency analysis menu is 

presented in Figure 21. After the selection in the Analysis Management page of the type 

of distribution, the method for estimating the probability of exceedance, and the type of 

line that will be fitted through the data points in the probability plot, the user can 

graphically check the validity of the selected distribution. When the points in the 

probability plot (Probability plot page) fall in a reasonable alignment, the user finds 

estimates for rainfall depths for selected probabilities and return period in a table on the 

Probability table page. When the points do not fall in a reasonable alignment, the data is 

most likely not distributed as the selected distribution. One can either select another 

distribution or attempt to normalize the data by selecting a mathematical operator to 

transform the data (Analysis management page). Statistical information on the goodness 

of fit and on the distribution is listed on the Information page. 
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Annex 1 – Rainfall data 
 

Table A1.1 Rainfall observed in Bombay (India) for the 37-year period 1960 – 1996 

(Source FAOCLIM, 2000). 

Year September 

(mm) 

October 

(mm) 

Total 

(mm) 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

97 

270 

341 

330 

258 

78 

183 

204 

150 

336 

311 

347 

67 

350 

147 

453 

398 

479 

256 

190 

141 

821 

204 

489 

334 

113 

99 

34 

832 

165 

352 

57 

259 

832 

353 

- 

- 

245 

101 

21 

18 

115 

0 

18 

72 

40 

0 

63 

23 

0 

65 

108 

173 

0 

17 

63 

9 

24 

69 

0 

76 

15 

142 

0 

47 

239 

30 

106 

2 

70 

84 

11 

133 

94 

2119 

2205 

2029 

1540 

1964 

2026 

1560 

2373 

960 

1553 

2626 

2444 

1511 

1850 

2469 

2791 

1882 

2316 

1835 

1832 

1923 

2441 

2382 

3107 

2141 

2423 

1287 

1937 

- 

1900 

- 

2620 

1629 

2370 

2031 

- 

- 

Average 295 62 2063 

Standard Deviation 206.0 63.6 453.2 
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Table A1.2 Annual maximum daily rainfall for Uccle (Brussels, Belgium) for the 50-

year period 1934-1983 (Source Demarée, 1985). 

Year Rain 

(mm) 

Year Rain 

(mm) 

Year Rain 

(mm) 

1931 

1932 

1933 

1934 

1935 

1936 

1937 

1938 

1939 

1940 

1941 

1942 

1943 

1944 

1945 

1946 

1947 

1948 

1949 

1950 

- 

- 

- 

23.9 

37.6 

23.8 

29.2 

33.9 

37.7 

60.1 

30.9 

72.1 

51.4 

24.2 

46.9 

26.6 

29.3 

29.5 

19.8 

39.0 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

43.0 

51.1 

39.2 

31.7 

23.0 

34.6 

37.7 

42.9 

30.8 

48.0 

32.2 

58.6 

78.3 

43.0 

48.4 

39.3 

23.9 

26.0 

52.9 

29.2 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

 

45.7 

28.6 

30.0 

30.7 

25.8 

33.0 

26.3 

49.2 

33.6 

38.2 

56.8 

50.1 

24.2 

Average: 38.1 mm 

Standard deviation: 12.92 mm 
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Annex 2 – Frequency factors 
 

 

Table A2.1 Values for the frequency factor k for normal frequency distribution for 

various probabilities of exceedance (extracted from Snedecor and Cochran, 1980). 

Probability of 

exceedance 

(%) 

+ k Probability of 

exceedance 

(%) 

 - k 

5 

10 

15 

15.87 

20 

25 

30 

35 

40 

45 

50 

+ 1.64 

+ 1.28 

+ 1.04 

+ 1.00 

+ 0.84 

+ 0.66 

+ 0.53 

+ 0.39 

+ 0.255 

+ 0.125 

+ 0.000 

50 

55 

60 

65 

70 

75 

80 

84.13 

85 

90 

95 

- 0.000 

- 0.125 

- 0.255 

- 0.39 

- 0.53 

- 0.66 

- 0.84 

- 1.00 

- 1.04 

- 1.28 

- 1.64 

 

 

 

Table A2.2 Values for the frequency factor k for extreme value distributions for 

specific return periods and sample size (Source: WMO, 1983). 

Sample 

Size 

Return period (years) 

n 5 10 15 20 50 100 

5 

10 

15 

20 

50 

100 

1.31 

1.06 

0.97 

0.89 

0.82 

0.78 

2.26 

1.85 

1.70 

1.58 

1.47 

1.40 

2.79 

2.29 

2.12 

1.96 

1.83 

1.75 

3.17 

2.61 

2.41 

2.30 

2.09 

2.00 

4.34 

3.59 

3.32 

3.09 

2.89 

2.77 

5.22 

4.32 

4.01 

3.73 

3.49 

3.35 
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Annex 3 – Normal probability paper 
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Annex 4 – Irrigation chart  

 

 
 

Example of an Irrigation Chart (front side) for potatoes cultivated in the region of 

Harare on a clay soil, presenting indicative irrigation intervals for four weather 

conditions (Holvoet, 2002). 
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Annex 5 – Structure of RAINBOW data files 

 

The data files of RAINBOW are stored in the subdirectory ‘DATA’. They are ASCII 

(text) files and have the extension ‘DTA’.  

 

The structure of the data file (Table A5) is illustrated for the example of the total annual 

rainfall for Bombay (Table A1.1): 

- On the first line, the description of the data set (maximum length is 28 characters) 

as well as (from position 29 onwards) a set of 5 integer and 2 real values are 

specified. The values refer to selections made by the user at run time for all kinds of 

program parameters. The default setting for the set is ‘ 1’ (normal distribution), ‘ 0’ 

(no transformation), ‘ 3’ (Weibull method for estimating cumulative probabilities), ‘ 

1’ (fitting a line through the points in the probability plot), ‘ 0’ (no outliers), ‘ 0.0’ 

(transformation constant), and ‘ 0.0’ (value for nil). Since the program automatically 

updates the values in accordance to selections made by the user at run time, the initial 

setting of these parameters is of no importance.  

- The first year and the last year of the record are specified respectively on the 

second and third line of the data file.  

- The total annual rainfall depths for each year are listed from line four onwards till 

the end. Only one value is specified per line. Any postion on the line and any type of 

format (decimal point, scientific, …) is valid. The values can be integers (without 

decimal point) or reals. If data for a particular year is missing ‘-999’ should be 

specified. 

 

 

Table A5. Example of the data file containing the total annual rainfall for Bombay 

for the 37-year time period 1960-1996 (Table A1.1). 

 Data string (description) Program parameters 

 ����  max. 28 characters  ���� from position 29 onwards 

1
st
 line Bombay total rainfall  1    0    3    1    0    0.0     0.0 

2
nd

 line (from year)  1960 

3
rd

 line (to year)  1996 

4
th

 (1960 rainfall) 

5
th

 (1961 rainfall) 

6
th

 (1962 rainfall) 

… 

31
st
 (1987 rainfall) 

32
nd

 (1988 missing rainfall) 

33
rd

 (1989 rainfall) 

… 

38
th

 (1994 rainfall) 

39
th

 (1995 missing rainfall) 

40
th

 (1996 missing rainfall) 

 2119 

2205 

2029 

…. 

1937 

- 999 

1900 

…. 

2031 

-999 

-999 
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