

2444-16

College on Soil Physics - 30th Anniversary (1983-2013)

25 February - 1 March, 2013

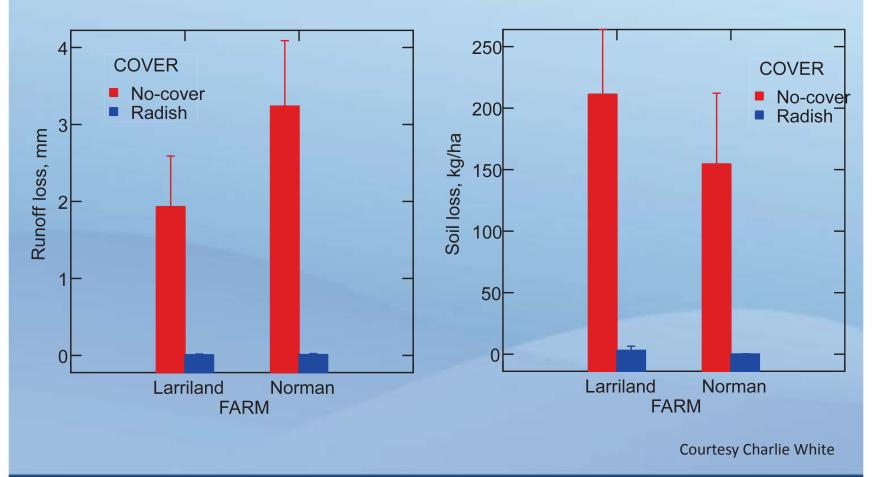
Soil management to improve water use efficiency Part 2

DUIKER Sjoerd

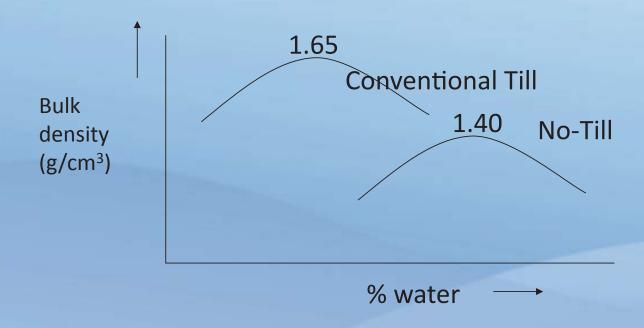
Penn State University

College of Agricutural Scien ces Plant Science
408 Agricultural Sciences and Industries Building

University Park 16802, PA


U.S.A.

Winter Rye in March



Radish Cover Crop Effect on Runoff and Erosion Losses

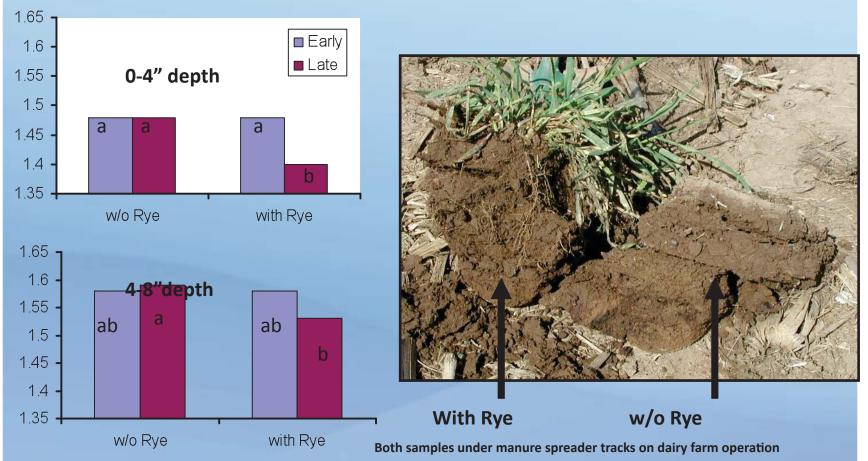
Organic Matter Decreases Soil Compactability

Top 5 cm, proctor, Thomas et al., 1996

Soil Aggregation

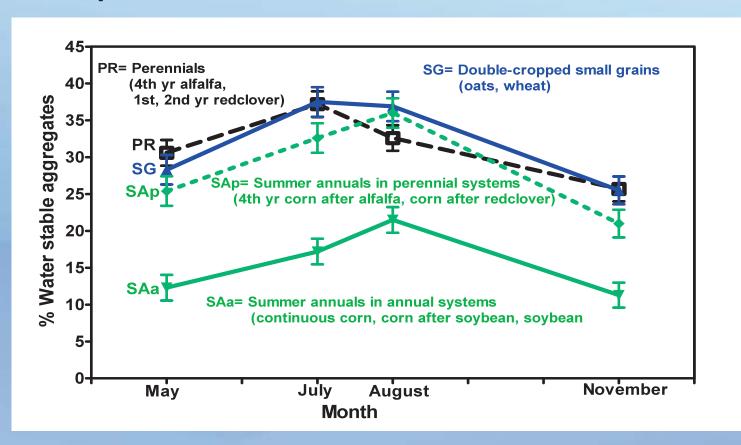
Cover crop treatment	Aggregate stability in surface 2.5 cm in March
No cover crop	60% a
Radish cover crop	73% b
Rye cover crop	85% c

Courtesy Charlie White, means with different letters are significantly different (LSD p<0.05)



With Plant Cover

Courtesy Charlie White

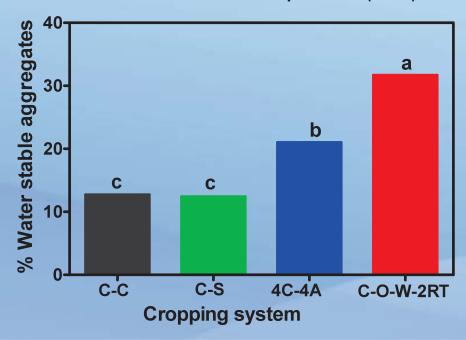


Cover Crop Effects on Soil Density in Next Crop

Rye effect on bulk density (g/cm³) in following maize crop in summer

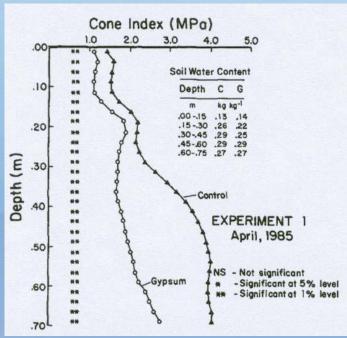
Crop Rotations

Continuous Living Root Occupation



Alfalfa roots – taproots penetrate subsoil

Annual Ryegrass established in standing corn @ N-sidedress


Crop Rotation Effects on Soil Structure

Soil aggregate stability for four cropping systems under inorganic fertility of Hunter Rotation Experiment (1990)

Grover, 2008. Long-term cropping systems effects on soil aggregate stability, corn grain yields, and yield stability. PhD thesis., The Pennsylvania State University

Improve Subsoil Structure Using Deep-Rooting Crops

4-yr old experiment (soy-soy-corn silage-alfalfa- alfalfa)

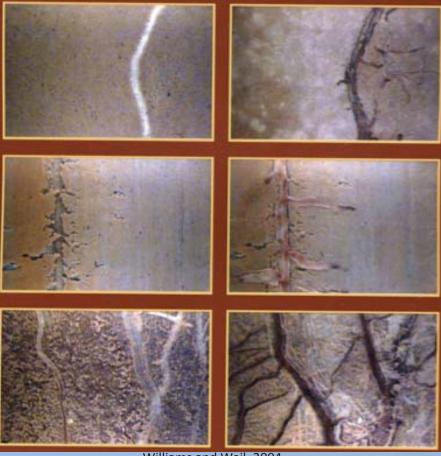
ALFALFA ROOTS ABLE TO PENETRATE THE SUBSOIL – CAUSED PENETRATION RESISTANCE TO DECREASE

2-yr old experiment (fallow)

GYPSYM ALONE DIDN'T DECREASE PENETRATION RESISTANCE

Radcliffe et al., 1986

Root Channels Created by Cover Crop Used by Following Maize Crop


Soybean roots

channels created by

follow root

canola

Canola roots penetrate plow pan in winter when soil is soft

Williams and Weil, 2004

Stimulating Biological Activity

Living vegetation to improve biological activity

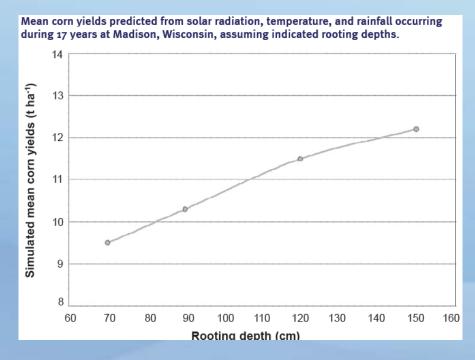
Worm holes covered with organic matter go >1 m deep

Deeper rooting with no-tillage!

	Tillage	Rooting depth (cm)	Lumbricus terrestris burrow depth (cm)	Middens (# m ⁻²)
1992 Mandan ND	NT sunflower	193	0	0
	Tilled sunflower	143	0	0
2009 Oshkosh WI	NT corn	131	128	24
	Tilled corn	67	0	0

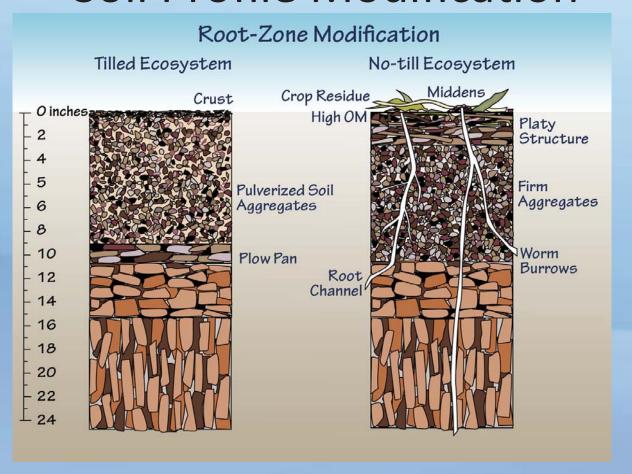
Deeper rooting in semi-arid ND was attributed to water conservation, while in humid WI it was attributed to activity of deep-burrowing earthworms. Kemper, Schneider and Sinclair. 2011. No-till can increase earthworm populations and rooting depths. J. Soil & Water Cons.66:13A-17A

Yield increase due to root depth increase


Heights, rooting depths, and yields of corn in tilled and no-till areas.

Area	Final height	Root depth	Grain yield	
	(cm)	(cm)	(bu/ac)	(t/ha)
Tilled #1	230	58	160	10
Tilled #2	232	69	164	10.3
No-till #1*	222	122	186	11.7
No-till #2	242	132	205	12.9

^{*} Where water table was high and corn appeared to be nitrogen deficient until July 22nd.


Deeper rooting in humid WI it was attributed to activity of deep-burrowing earthworms. Kemper, Schneider and Sinclair. 2011. No-till can increase earthworm populations and rooting depths. J. Soil & Water Cons.66:13A-17A

Yield increase due to root depth increase

Deeper rooting in humid WI it was attributed to activity of deep-burrowing earthworms. Kemper, Schneider and Sinclair. 2011. No-till can increase earthworm populations and rooting depths. J. Soil & Water Cons.66:13A-17A

Soil Profile Modification

Conclusions

To improve water use efficiency:

- 1. Mulch cover maintenance for evaporation and runoff control
- 2. Need to evaluate entire cropping rotation including fallow periods
- 3. We are experiencing a shift from thinking of physical and chemical solutions to WUE improvement to biological solutions, including permanent no-tillage, crop diversity, and cover crops to improve soil quality and WUE at the same time.