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The general equation to estimate the critical value of soil water content using
matric flux potential with Van Genuchten hydraulic functions for agricultural and

environmental purposes

Durval Dourado Neto

Full Professor. University of Sao Paulo

1. Deriving an expression for the Matric Flux Potential based on the van Genuchten
hydraulic function parameters
Soil hydraulic diffusivity (D, m* d) is defined as the relationship between soil
hydraulic conductivity (K, m d') and the specific water content (C = d6/dh, m™):
K
p-= [1]
and, using the Van Genuchten (1980) hydraulic functions:
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K(0)=K 6 1-(1-@»1) (n>1and0<m<1) 2]
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Cc(®)=a(n-1)0, —Gr)@”]’(l—@’LJ [3]

) 1 ; . . )
with m=1-—, a(m 1), m, n and A are statistical parameters, and @ is the effective
n

degree of saturation (relative soil water content):
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0, -6
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where 6 is the soil water content (m’ m™), 6 is the saturated volumetric water content
(m® m™) and 6, is the residual water content (m® m™).

Matric flux potential (M, m”d") is defined as the integral of soil hydraulic
diffusivity over soil water content (6). Defining M,,(6,) as the matric flux potential at

0= 0,, starting at a reference value 6,, it follows that:

M (0,)= }D(@)de = (65 - er)(}D(@)d@ [5]



Substituting [1], [2] and [3] in [5]
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To obtain an analytical solution for this integral, the following transformation is

[6]

performed:
O =cos™(x) [7]
then:
1
X = arccos| O*" [8]
and
1
1\2
2ml 1-O0" I
do = - - dx [9]
o
Substituting [7] and [9] in [6]:
fsin”’" (x)cos #4173 (x b — Zfsill(x)cosz’”(l”)‘3(x)dx +
M (x )= _ 2mK§ ) X, X, i [10]

e aln-1)] *

+ jsin“zm (x)coszm(nz)-s (x)dx
Xy

Introducing Gauss's hypergeometric function (;F;), the three integrals from [10]

can be solved respectively as:

jsinl—zm(x)cosz(,1+1)m-3(x)dx _

o
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Substituting [11], [12] and [13] in [10]:

Cosz().+1)m—z (x) a

M, (x,)= o ll)q(q/fn+ml){ F[/lm+m 1,m,; Am + m; cos*(x )] }

2+ F[)Lm+m 1,-m;2- +m;cos*(x )] N

By definition, the hypergeometric function (;F;) can be written as:

Fl|_ﬂ,m +m—1,m;Am + m;cos’ (x)J=

| g{w +m=1),(m), [cos*(x)] } _

(m+m), = K

- 2 [cosz"(x)ﬁ(im +m+j—2)(m+j—1)}

k! (m+m+j-1)
and, analogously:

I_/Im +m-1,-mA- +m'cos2( )J=

g e )

Evaluating equations [15] for k =4, we obtain:

" 2

(m+m+ j- 1) Am+m
1+ (/Im +m+ 1)(2 + m) cosz(x)
(2m +m)1+m) cos*(x) (4m +m+2) 3

1+

(m+m+1) 2 1+(/lm+m+2)(3+m)cos2(x)
(2m+m+3) 4

Analogously, equation [16] becomes

- 4 COszk(x)lil[(ﬂm+m+j—2)('j—m—1) =1_(im+m-1)mcosz(x)
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Substituting [17] and [18] in [14] and defining:
Q= m(ﬂ. + 1) [19]

we obtain:

rl s cos?(x) (1+ )2 +m)
3 2+¢)
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which can be rewritten as:
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with:
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®(x) = cos?*)(x), [22]

Finally, substituting [8] in [21] and [22] yields an expression for M,,(6,):

M,(0,)- (e 40, 23]
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2. Deriving an expression for obtaining analytical solution

To obtain an analytical solution, the following assumptions were made: (i) the
equivalent root system can be represented by a cylinder with radius ¢ and height z,; (i1)
there is a value of soil water content (6;) defining the limit between potential and sub-
potential transpiration rate; (iii) the effective soil volume explored per plant
(rhizosphere) depends on the radius (7,,) of the root extraction zone and on z; (iv) the
radial water flux density (¢) in the rhizosphere is governed by the actual transpiration
(T,); (v) the radial water flux density in the rhizosphere, the water uptake and 7, are
equivalent during the drying process; (vi) there is no water recharge, i.e., there is no
ascendant flux density bellow the lower limit of the root zone; (vii) the total water
transpiration from plant to atmosphere is defined by 7, and the total surface 4, and (viii)
the relative transpiration is equivalent to the relative matric flux potential in the entire
rhizosphere (V) (Figure 1).

The equivalent root volume per plant (¥,, m®) is defined as follows:

V,=mr, Z, [25]
where 7y is the equivalent root diameter (m) and z, is the effective root depth (m), from
the soil surface to the lower border of the root zone.

For a transpiring plant extracting water from a soil, hydraulic conditions can be
classified according to the soil water availability in a non-limiting water range and a
limiting water range. While the soil water content is in the non-limiting water range,
transpiration occurs at the potential rate and relative transpiration is constant and equal
to 1. When soil water content falls below a certain threshold value (6, m® m™), relative
transpiration starts to diminish. Therefore, this limiting water range (6< 6,) is also
called the falling rate phase. During the constant rate phase, from #; to #, the flux density

(g, m d') in the rhizosphere can be calculated by:

T A oh
PP
=—L 2 - _K(0)— 2
r Ar (0 o |toststy [ 6]

where T, is the potential transpiration rate (m dh), A, is the surface area (m?), 4, is the
root area (m”), and @ is the soil water content.

In the falling rate phase (6, < 6< 6,):

1.4, dh
=—_2 =-K(@ 27
qa Ar ( )5’”/ [ ]

o



where 7T, is the actual transpiration rate (md"') and 6, is the soil water content at
permanent wilting.
The soil volume explored per plant (7, m’), representing the rhizosphere, is

defined as follows:

V,=mz, (r,f, - r02 ) [28]
where r,, is the radius (m) of the root extraction zone.
It has been shown (Metselaar & De Jong van Lier, 2007) that it is reasonable to

assume that

IR 71 [29]

where M and M, are the mean matric flux potential and the matric flux potential at the
root surface, respectively, and M , and M, are the mean matric flux potential and the

matric flux potential at the root surface at the onset of the falling rate phase

(corresponding to 6= 6;). Substituting equations [26] and [27] in [29]:

M_L_r [30]
M, T

P
where 7, is the (dimensionless) relative transpiration. Substituting the expression
derived for M (equation [23]) in equation [30] yields:
"M, 4@)-40,)

In Figure Error! Bookmark not defined., 7, calculated for Van Genuchten type

of soils by equation [31] is shown as a function of relative soil water content ©' with:
B 0-0,
0 -0

w

@T

[32]

Figure Error! Bookmark not defined.a shows T,(O©") for different values of m
for A= 0.5. Reported values of m in literature range from 0.1 to 0.8. As can be observed,
m = 0.1134 (corresponding to n = 1.1279) corresponds to a straight line and, therefore,
to a constant diffusivity. Van Genuchten diffusivity can be shown to be equal to

2

n-1 1-n

1-2n n\ 5 n n
D=K dh K, @/l 1-n 1—(1—@"‘1J [@1‘” —1] [33]

6 aln-1)0.-6,)



For values smaller than m = 0.1134, the reduction curve shows to be convex, which did
not occur for any of the soils analyzed by Metselaar and de Jong van Lier (2007).
Figure Error! Bookmark not defined.a also shows that convexity increases with
increasing m, until reaching a maximum at m = 0.352. For values higher than 0.352,
convexity decreases with increasing m.

Figure Error! Bookmark not defined.b shows 7(®") for different values of
Aat m=0.5. Reported values in literature range from -5 to +2. As can be seen, low
values of A correspond to convex curves; high values of A result in concave curves;
A=-2.1 corresponds to a more or less straight line.

For the special case of ©,, =0 (or: 6, = 6,), equation [31] reduces to:

T - ﬁ% [34]
!

Substituting [24] in [34] yields:

1
0" (p+1)2+m) 1+§; (@+2)3+m) _

3 ((p+2) 4 ((p+3)

(1+m)1+

1 1

. +@’”((p+1)(2—m) +@’"(q0+2)(3—m>
o (=mht+ = +2) |4 (pe3) [35]

It can easily be seen that:

g T T
99 __L__ g __ip [36]

ot z z z

or, substituting equation [34] in [36]:
90 _ T, 40) [37]
ot z, Ai@, )

which can be reorganized as:

1 _ T
2(5)69 =—;A[(7§—l)dt [38]

Substituting 6 = (HS -0, )d@ and integrating yields



A T, T
0.-0 00 = ———— [dt = ——F=t - 39
VO R O R L

Substituting equation [24] in [39] and performing the following transformation:

§\~

O =cos’(z) [40]
z = arccos| @ " [41]
dO = -2mcos>(z)sin(z )dz [42]
results in
r_
S -
. (l+m){l+ COS3 (z)((p-l(—qu)-(fz-;m) 1+ COS4(Z)(¢2;)_(F33-;m) }— [43]
fcosc (z)sin(z) - . dz
2, (1=m)l1+ cos’(z) (@+1)2-m) - cos’(z) (@+2)3-m)
3 (p+2) | 4 (¢+3)
which can be rewritten as
cos ™27 (z)sin (z) & [44]
zZ
2 f {1+acos )[1+bcosz(z)]}—h{l+cc0s2(z)[l+dcos2(z)]}
where
Tp(t_tl)
"o, -6,)46 k. >
_ (¢+l)(2+m)
‘= 3(p+2) [46]
_ (¢+2)(3+m)
_—4((p+3) [47]
~ ((p+1)(2—m)
T 3(p+2) [48]
~ (¢)+2)(3 m)
d= 4(p+3) [49]
g=1l+m [50]
h=1-m [51]

Transforming equation [44] according to



y =cos*(z) [52]

dz = ——F—Fd 53
2cos(z)sin(z) g >3
results in
y 3/
T= dy [54]
{g [a.y(b.y+1)+1] —h [c.y(d.y+l)+l]
f=c-1 [55]
Equation [54] can be solved as follows:
NIRd
B IR B S PRV R S B Y S R L
! -I'+S,-S,y I'+S, +2S,y
T 22e)) ; [56]
A
Y Y
y—SC S, y+SC+SD
S, Sp
Sy
where the auxiliary variables (S4, Sp Sc Sp and Sg) are defined as follows:
S, =\/a2g2 -2ag[2b(g-h)+ ch]+ ch[4d(g—h)+ ch] [57]
S, =\/(ag-ch)2 -4(g-h)(abg-cdh) [58]
Se = \/a2g2 + 4ab(gh -g’ )- 2acgh + 4cd(gh -n’ )+ c’n’ [59]
S,=ag-ch [60]
S, = 2(abg—cdh) [61]



Expanding equation [56] results in:

S-S Sy +8S
B e IR ot oo
7 T 7 o
_y Y
S5y b+ 5t S
1 Se Si
i (
Ay
S-S Sy +S
F|-f-fl-f——8—"D0 F|-f-fl-f =8 "°b
A fﬂf—F+SA—2SEyl) ’ 1(ff fF+SA+SEy,
y1< 7 - 7 d
S R
S-S, Sc+8,
T e [62]
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Substituting [52] in [62]:

zFl(_f_ﬂ_f

SB’SD
S, + 8 ,-S, cos*(z)

cos?/ (z)]

2 b (-ﬁ-f,l-f

S

cosz(z)

cos*(z)- SCS_ Sp
E

zFl(-f-ﬂ-f S+ 5, )

S, +S,+8S,cos’(z)
7

cos?(z)
Sc+85,

cos>(z)+

E

SB'SD
-S, +8,-S, cos*(z,)

cos* (z, )]

S
cos?(z,)
Sc _ SD
SE

cos?(z,) -

zFl(-f,-ﬂ-f Sa* S ]

S, +S,+S,cos’(z,)

7
cos?(z,)
Sc+S5,

SE

cos’ (z, ) +

[63]
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Substituting [41] in [63]:

o

A ATA

S;+S,

1

S, +8,+8,0m

[64]
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Expanding Gauss's hypergeometric functions for k£ = 4, the final equation can be written

as follows:
e SeSo)e L (S es)e
@g S, Sy-8,0" S, +85,+5,0" |
1 f [
1 1
e e
@%_SC_SD @$+SC+SD
1 Sg S
T =
A
1+ (SB’SD )‘Ql 1+ (SB + SD )‘Q 1
@ﬁ S -S,-S,0" S,+S,+8,0"
I 7 f
1 1
oy oy
1 1
@1’; _ Sc=8) @1; + Se+5) [65]
SE SE
with

(= Y == g) (=1 1)3- 1)
Q_[(l_f) (22‘ )) 6(3- 1) 24(4- 1) } [66]

The mean soil water content (6, m’ m~) can be calculated as the weighted

average of two soil volumes as follows:

/ re(r)dr (2 =)+ (s, )(‘j: —r;)

m

f rdr

o=—" 2 [67]
e

2 2
I"m —2]’0 +Z

where 6(r,,) is the soil water content (m’ m™) at » = r,,.
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APPENDIX

atmosphere

if ©Ow < 6<6c: Ta< Tp zone: Dz)

i <O <ef Ta= i :

if ©c <0 < of: Ta= Tp (optimum zone: Oz) ETa
ETp

E
z =0 (Soil surface) ‘|r " O
i : z=17e
-e/2 T, e/2

Figure 1. Schematic representation of basic assumptions to characterize the water
dynamic in the soil-plant-atmosphere system for agricultural and environmental
purposes, where ‘q’ is the soil water flux density (Darcy-Buckingham, 1856-1907), ‘Ze’
is the effective root depth, ‘Vp’ is the effective soil volume explored by plant, ‘O’ is the
soil water content (‘Ow’, ‘Oc’ and ‘Of are wilting point, critical value and field
capacity, respectively), ‘E’ is the evaporation, ‘Ta’ is the actual transpiration, ‘Tp’ is the
potential transpiration, ‘ETa’ is the actual evapotranspiration, ‘ETp’ is the potential
evapotranspiration, ‘LA’ is the total leaf area, ‘ry’ is the equivalent root diameter, ‘ry,’ is

the radius of the root extraction zone and ‘RA’ is the total root area.
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Se

Figure 2. Comparison between analytical (results for sand soil according to equation 22

using different values of ‘k’ - from 4 to 12) and numerical solution showing the matric

flux potential (M, cm”.d") as function of effective degree of saturation (Se), where

@=0.0144 cm™; m=0.348109518; n=1.534; ©s =046 m’m~; Or=0.02m’.m>; A = -

0.215 and Ks = 15.42 cm.d”".
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140 | Loam

120 4
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60 -

40 4
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k=12

0.4

0.5
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Figure 3. Comparison between analytical (results for loam soil according to equation

22 using different values of ‘k’ - from 4 to 12) and numerical solution showing the

matric flux potential (M, cm”.d") as function of effective degree of saturation (Se),

where a=0.0084 cm™; m=0.306037474; n=1.441; ©s=0.42 m’m>; Or=0.01 m’>.m’

3 0=-1.497 and Ks = 12.98 cm.d"".
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10 4
Clay

Analvtical
k=4

M (cm?d)
()]

Numerical

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Se

Figure 4. Comparison between analytical (results for clay soil according to equation 22
using different values of ‘k’ - from 4 to 12) and numerical solution showing the matric
flux potential (M, cm”.d") as function of effective degree of saturation (Se), where a
=0.0195cm™; m=0.098286745; n=1.109; ©s=0.59 m’.m”; Or=0.01 m’m”; A =-
5.901 and Ks =4.53 cm.d ™.
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Van
Genuchten
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(=straight line)
m =0.352
0.2 m=0.8 (highest
convexity)
0 1 T T T T 1
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ot
(a)
A =21
(close to
~ straight line)
~
= 04 A=05
a8 A — 0
fl Van
0.2 =2 Genuchten
m =0.5
0 _ 1 T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2
ot

(b)

Figure 5. Relative transpiration 7, / T, as a function of relative soil water content of
[©T=(6-6,) / (6-6,)] for Van Genuchten type of soils (a) at different values
of m with A= 0.5 and (b) at different values of A with m = 0.5.
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