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Abstract

The effects of soil properties on crop growth and yield have traditionally been analyzed using classical statistics methodologies.

These methodologies do, however, not consider sampling position coordinates and assume independence between samples. This

study had the objective of using the state-space approach, which considers sampling position, to evaluate and to discuss a spatial

process using variables related to the soil–plant system. For this, six data sets were collected in a sugarcane experiment carried out

on a Dark Red Latosol (Rhodic Kandiudalf), at Piracicaba, State of São Paulo, Brazil. The sugarcane was planted on a 0.21 ha

field, comprising 15 rows, 100 m long, spaced 1.4 m apart, with three treatments (mulching, bare soil and straw burning before

harvest) and four replicates, forming a transect of 84 points. In this way, the relationships between the number of canes per meter

of row and available soil P, Ca and Mg, clay content and aggregate stability were studied using a first order state-space model.

Results show that all of the used state-space equations described the spatial distribution of number of canes better than the

equivalent multiple regression equations. It was also identified that the soil clay content spatial series has an effective contribution

to describe the number of canes in this study, because it is related to the best performance in each different scenario.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The evaluation of land management practices and

their impact on environmental quality requires

adequate analytical tools and experimental designs.

A significant progress to understand crop production

has already been made by measuring and analyzing

on-site processes (van Kessel and Wendroth, 2001).

Traditionally soil scientists have used random

sampling techniques, assuming independence

between samples, in order to analyze the effect of

soil properties on crop growth and yield. Hence, crop

development variables and soil attributes collected at

spatially different locations relative to each other, in

general manifest low correlation when classical

statistical analysis is used (Nielsen et al., 1997).

According to Coelho et al. (1998), the importance of

spatial and temporal variability of soil chemical and

physical properties and their relation to crop yield

should not be underestimated in planning soil

management. Recently, applied analytical techniques
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in agriculture, such as the state-space methodology,

have shown to provide opportunities for an on-site

analysis and for a suitable identification of spatial

relations between crop and soil variables taking into

account their spatial association. State-space model-

ing is a technique that can filter noise underlying crop

and soil processes at various scales if the observation

density supports the identification of the correlation

length. Hence, this technique can be applied to

identify landscape-scale processes and generate

reliable predictions, having practical advantages,

and it can be a more effective research tool in

comparison to other approaches to understand and

explain landscape-scale variation in agricultural

systems (Morkoc et al., 1985; Wendroth et al., 1992;

Nielsen et al., 1999; Dourado-Neto et al., 1999; Timm

et al., 2000, 2001). Multidimensional spatial pro-

cesses are frequently found, involving soil variables

such as water, temperature, soil salinity, infiltration,

and crop yield (Warrick et al., 1986; Shumway et al.,

1988; Ahuja and Nielsen, 1990). Li and Lascano

(1999) used state-space analysis to describe the spatial

correlation between cotton lint yield, soil water,

phosphorus, and site elevation. It has also been used

to describe adequately the spatial association of wheat

grain yield, soil base saturation, and water storage

capacity on a newly land-shaped field in North

Carolina (Cassel et al., 2000). Nielsen et al. (1999);

Wendroth et al. (1999) tested state-space modeling to

quantify localized variation and their findings indi-

cated that these models provide an insight into the

spatial patterns of crop and soil variables.

Other autoregression techniques, geostatistical

analysis, and multiple regression use a single set of

relationships among the variables to explain variation

across a data series and require that the mean and

variance ratio remain constant across space. However,

the variation across fields typically tends to be

localized, and therefore, the state-space modeling,

compared to other more commonly used analyses, can

accurately and precisely predict landscape-scale

variations (Stevenson et al., 2001). Other reports

(Morkoc et al., 1985; Wendroth et al., 1992; Li et al.,

2001) have observed that the state-space modeling

can be an effective research tool to explain landscape-

scale variation in agricultural systems. According to

Stevenson et al. (2001), most agricultural scientists

would agree that landscape-scale variation is always

present and that the ANOVA (analyses of variance)

approach has to first detect if landscape-scale

variation is present, using statistical significance and

traditional experimental designs, before providing any

further explanation.

In this study, we want to improve our understanding

on the relationships among sugarcane yield par-

ameters, such as the number of canes per meter of

row, and physico-chemical soil properties such as

available phosphorus, calcium, and magnesium, clay

content and aggregate stability, using a state-space

approach. With this approach, we want to identify as

well as eliminate factors involved in field processes,

searching for an optimal management of soil resources

and crop yield for sugarcane production in Brazil.

2. Material and methods

The state-space analysis characterizes the state of a

system (set of unobservable variables) at a location i

to its state at a location i–h, h ¼ 1; 2; 3;…; n: For

h ¼ 1; Shumway et al. (1988); Wendroth et al. (1997)

and Nielsen et al. (1999) described the state-space

approach as follows:

ZpðxiÞ ¼ fppZpðxi21Þ þ wZpðxiÞ ð1Þ

ZpðxiÞ being the state vector (a set of p unobservable

variables) at location xi; fpp a p £ p matrix of state

coefficients, which indicates the measure of the

regression; and wðxiÞ noises of the system for i ¼

1; 2; 3;…; n: Noise values are assumed to have zero

mean, not being autocorrelated and being normally

distributed with constant variances. If these Z variables

were observable, this would be the usual structure of a

vector autoregressive model, in which the coefficients

of the matrix fpp could be estimated by multiple

regression techniques such as least squares, taking

ZpðxiÞ and Zpðxi21Þ as the dependent and independent

variables, respectively. In the case of the state-space

model, however, the true state of the variables is

considered ‘embedded’ in an observation equation:

YpðxiÞ ¼ AppðxiÞZpðxiÞ þ vYpðxiÞ ð2Þ

the observation vector YpðxiÞ being related to the state

vector ZpðxiÞ by an observation matrix AppðxiÞ (usually

known as, for instance, an identity matrix, p £ p ) and

an observation noise vector vðxiÞ; also considered of
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zero mean, not autocorrelated and normally distrib-

uted. Also, the noises wðxiÞ and vðxiÞ are assumed to be

independent of each other, the measurements need not

be considered true, but can be seen as indirect

measurements reflecting the true state of the variable

added to a noise (Wendroth et al., 1997). The state

coefficients of the matrix fpp and noise variances of

Eq. (1) are estimated through a recursive procedure

given by Shumway and Stoffer (1982). They are

optimized using the Kalman filter (Kalman, 1960;

Gelb, 1974), combined with an iterative algorithm and

their magnitude reflects the importance of each

variable in their ability to define the system (Stevenson

et al., 2001). According to Wendroth et al. (2001), the

state-space modeling integrates the influence of local

effects since the meaning and impact of the transition

matrix coefficients for the state vector can change

across space or time, providing more flexibility than a

technique, that is limited to a unique response function.

Data used for this analysis belong to a sugarcane

experiment started in October 1997, on a Dark Red

Latosol (Rhodic Kandiudalf), called locally ‘Terra

Roxa Estruturada’, at Piracicaba, State of Sao Paulo,

Brazil (228 420 S; 478 380 W), 580 m above sea level,

250 km inside the continent. The sugarcane variety SP

80-3280 of medium to late cycle was planted on a

0.21 ha field, with 15 rows, each 100 m long, and a

row distance of 1.4 m. Sugarcane was planted along

leveled furrows due to a 7.4% slope of the

experimental area, a practice that minimizes run-off.

A completely randomized block design was used,

with three treatments and four replicates distributed

on lines 7, 8 and 9, separated by borders, in such a way

that each plot had three cane rows of 4 m, totaling a

cropped area of 16.8 m2. Each replicate and each

border were divided in strips of 1 m, forming a spatial

transect of 84 points, as shown in Fig. 1.

During the first year (1997/1998) no treatments

were imposed on the whole field, which was managed

homogeneously according to traditional agricultural

practices. After the October 1998 harvest, three

management treatments were established: (i) mulch-

ing the ratoon crop with trash (cane tips and straw

from harvest, T1 and T2);1 (ii) bare soil between rows

after harvest (T3); and (iii) soil surface covered by

residues left by the traditional practice of straw

burning before harvest (T4). More details about the

field experiment can be found in Oliveira et al. (2001).

Sugarcane harvest (October 2000) was made by

hand counting the total number of cane plants (NC) in

the three central lines along each meter for the 84

point transect, and NC was used in the analysis of this

study.

To determine soil available P, Ca and Mg, and clay

content and aggregate stability, 1.0 kg samples (0–

0.15 m layer) were collected (after harvest October

2000) at the center of each meter, hence, for the same

84 points along the transect. Soil samples were dried

and sieved (2 mm) and sub-samples were used to

perform laboratory analyses according to Gee and

Bauder (1986); Kemper and Rosenau (1986);

EMBRAPA (1997).

Data were analyzed using the state-space approach,

with the aid of the software, Applied Statistical Time

Series Analysis (ASTSA), developed by Shumway

(1988). Data ZpðxiÞ were normalized with respect to

their mean m and standard deviation s, as follows:

zpðxiÞ ¼ ½ZpðxiÞ2 ðm 2 2sÞ�=4s ð3Þ

where zpðxiÞ are the normalized values, dimensionless

and having a mean of 0.5 and standard deviation of

0.25 (Nielsen et al., 1997; Wendroth et al., 1999). This

transformation allows state coefficients of fpp having

magnitudes directly proportional to their contribution

to each state variable used in the analysis (Hui et al.,

1998).

3. Results and discussion

The sugarcane crop is semi-perennial, being

renewed every 5 years. It belongs to the grass family,

having a bulky rhizome, cane stalks can reach 3 m in

length, and a root system that is mostly confined to the

0–0.50 m top layer, with some roots growing more

than 1.0 m in depth. It is planted in rows and harvested

after 1 year or more. Stalks are used to manufacture

sugar and/or alcohol. After each harvest, rhizome

sprouts renew the crop, now called ratoon. After 4–7

ratoons, the crop is renewed with new plants, using

stalk pieces that germinate.

The data set used in this analysis is from the

second ratoon crop (October 1999–October 2000).

1 T1 differs from T2 only in terms of 15N label, a study reported

elsewhere.
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The behavior of the number of canes (NC), phos-

phorus (P), calcium (Ca), magnesium (Mg), clay

content (CC) and aggregate stability (AS) data,

collected along the transect is shown in Fig.

2(A–F), respectively. In Fig. 2A and E, we can note

the inverse behavior of the number of canes and the

soil clay content along the transect.

In the Southern Hemisphere, the spring–summer

period is important for the establishment of the ratoon

sugarcane crops. Although being a relatively short

period of the crop cycle (60–90 days), it is the period in

which the crop rhizome is being renewed and is more

sensitive to weather and soil conditions. During this

period, high rain amounts were measured (52.1 mm:

November 1999; 269.9 mm: December 1999; and

235.9 mm: January 2000). Rains associated to the

higher clay content (poor natural drainage) and the

effect of soil surface mulching on T1 and T2 treatments

can explain the lower number of canes per meter in T1

and T2 when compared to T3 and T4. The establishment

of a humid microclimate in the straw layer, which had,

initially, a thickness of 0.20–0.30 m could have

Fig. 1. Schematic experimental design showing the 15 cane lines, each 100 m long, indicating the 3 central lines (7, 8 and 9) used to measure

physical and chemical soil properties. B ¼ border; T ¼ treatment; R ¼ replicate.
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promoted fungi and microorganism growth that

affected rhizome sprouting and stalk development.

Each data set was first analyzed using classical

statistics to obtain descriptive parameters such as

means, standard deviations and coefficients of vari-

ation (CV). From Fig. 2 it can be seen that CV values

for all soil and plant variables ranged from 8.7 to

52.3%. The smallest CV was for clay content (Fig. 2E)

and the largest for P variation along the 84 point

transect (Fig. 2B). All these variables exhibit point-to-

point fluctuations due to soil heterogeneity (natural

spatial variability), which presents local characteristics

and, therefore, may be better represented by a local

model (e.g. state-space model). In this case, the use of

global or space-independent models (e.g. standard

multiple regression) based on the assumption that

each data set manifests a constant mean along the

entire transect, ignoring its local spatial variation, fails

to express the soil spatial variability. Under such

conditions, according to Wendroth et al. (1999), local

trends may be better considered with nearest neighbor

analysis (e.g. state-space modeling).

Traditionally, in most agronomic investigations

statistical analysis such as ANOVA or regression, are

Fig. 2. Data distributions along the transect: (A) number of canes NC; (B) soil phosphorus P; (C) soil calcium Ca; (D) soil magnesium Mg; (E)

soil clay content CC; and (F) soil aggregate stability AS.
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done to identify yield response to different inputs

aiming to describe the changes observed within and

among plots. Using these traditional statistical tools

the spatial coordinates of the observations are not

considered, assuming that the observations are

spatially independent of each other, being randomly

distributed over the entire field (no correlation

structure). According to Nielsen and Alemi (1989),

classical statistics, with the applied ANOVA-based

experimental design, assumes that observations

within and between treatments are independent.

Such analyses still lack proven concepts and strategies

to interpret the cause of spatial patterns, mainly

because response functions between crop yield and

different variables are not constant nor consistent

across an agricultural field (Nielsen et al., 1999). To

understand, how soil physical and chemical properties

can affect crop growth and yield, we need to examine

their spatial relationships. Several statistical tools,

like autocorrelation, semivariogram, crosscorrelation,

kriging, cokriging and state-space analysis (Morkoc

et al., 1985; Wendroth et al., 1992; Wendroth et al.,

1997; Hui et al., 1998; Dourado-Neto et al., 1999)

have been used to evaluate the correlation structure of

spatial distributions. In our case, we calculated the

autocorrelation function (ACF) for each data set, i.e.

number of canes (Fig. 3A), P (Fig. 3B), Ca (Fig. 3C),

Mg (Fig. 3D), clay content (Fig. 3E) and aggregate

stability (Fig. 3F) with the objective of evaluating the

spatial correlation of the observations, in other words

if they had been monitored at a distance sufficient for

identifying their spatial representativity. Using a t test

at the 5% probability, the ACF of the number of canes

data presented in Fig. 3A manifests significant spatial

correlation up to 10 lags. Fig. 3B–D shows that the

spatial dependence of the soil P, Ca and Mg data set is

significant up to 6 lags. The strong spatial dependence

between adjacent observations of clay content data is

presented in Fig. 3E. From Fig. 2(A–E) it can be seen

that the spatial distributions of number of canes, soil

P, Ca, Mg and clay contents each manifest a trend

along the transect. This trend causes a relatively

strong spatial dependence of each variable as shown

by the ACF in Fig. 3(A–E). Unlike the other

observations, aggregate stability had no discernible

trend, and manifests spatial dependence up to 3 lags

(Fig. 3F). Stationarity (no trend) means that the series

develops stable along space, with mean, variance and

autocovariance constant along the domain of interest.

Most of the series in practice present some sort of non-

stationarity, such as trends and periodicity. Some

models used in time series analysis (e.g. autoregres-

sive AR, moving average MA, autoregressive inte-

grated moving average ARIMA) impose the need of

transforming the original data to remove trends and

then use standard statistical procedures.

Soil spatial variability can occur at different levels,

related to different factors, such as variation of the

soil’s parent material, climate, relief, organisms and

time, i.e. related to the processes of soil formation

and/or effects of management practices adopted for

each of its agricultural use (McGraw, 1994). Since

soil properties show spatial variability, it is important

to take into account the uncertainty in model input

parameters, when the behavior of soils is simulated.

Another important aspect is related to the scale in

which the data were collected. Such scale effect, in a

statistical sense, may be referred to as the spatial

correlation length or integral scale of the measure-

ment, property or process (Dagan, 1986). In principle,

it is possible to run the model in a large scale and then

to evaluate its performance in a smaller scale. As

pointed out by Cushman (1990), spatial patterns of

soil properties, within and between scales, might be

different from the organization of the soil hydro-

logical processes across spatial scales. As the physical

process moves towards a larger spatial scale, soil

properties may change from deterministic to random,

with the smaller-scale variations filtered out by the

larger-scale process, thereby eliminating non-station-

ary trends at the smaller spatial scales.

According to Journel and Huijbregts (1991), the

autocorrelation function is a tool that reflects the local

variation between samples for different separation

distances, being used to identify the range of the

spatial correlation of the observations of a variable. If

physical, chemical and biological phenomena are

being observed in a form that leads to a numerical

quantification in a sequence, distributed in space, and

a set of observations present a spatial dependence

such that a range of correlation does exist, we can take

advantage of this spatial dependence making use of

the location of each observation to better understand

the different processes of our study.

Ignoring the locations of the observations, we

perform a classical linear and multiple regression
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analyses using any combination of the sets of

observations determining how well the set of number

of canes measured across the transect are described by

classical regression equations. We found that not

more than 38% of the variance of the number of cane

data is explained by such analyses using any

combination of the sets of observations (Table 1).

We verified that the best regression results from using

the five dependent variables, and the poorest linear

regression were obtained using aggregate stability

only.

Using the deterministic equations, the information

that a variable carries from its neighborhood is often

neglected (McBratney and Webster, 1983) and the

additional information from the spatial variability of

soil properties is ignored. Because, we note the

obvious spatial trends in at least five of the six sets of

observations (number of canes, soil P, Ca, Mg, and

clay content), we would expect that these variables

would be related to each other.

When we are interested in describing the spatial

degree of linkage between two variables, the cross-

correlation function (CCF) can be used (Wendroth

et al., 1997). Shumway et al. (1988); Nielsen et al.

(1999) and Cassel et al. (2000) documented the use of

the crosscorrelation analysis to determine the spatial

Fig. 3. Autocorrelation functions (ACF) for: (A) number of canes NC; (B) soil P content; (C) soil Ca content; (D) soil Mg content; (E) soil CC

content; and (F) soil AS.
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correlation structure of soil properties as a logically

quantitative description of the spatial association

between two soil attributes. The analysis of the

crosscorrelation coefficient between variables that are

sampled at neighboring locations with increasing

distance also provides more insights on the spatial

covariance structure of the two variables. This

information can be more useful than the classical

correlation coefficient. Also, the correlation over

several lags is considered and provides a stronger

basis for spatial interpolation (Nielsen et al., 1999).

In our case, CCF was calculated to analyze the

spatial correlation structure between the number of

canes and: (i) soil P; (ii) soil Ca; (iii) soil Mg; (iv) soil

CC; and (v) soil AS. Using the t test at the 5%

probability, the crosscorrelogram between number of

canes and soil P (Fig. 4A) shows a weak spatial

dependence between them. Similar results were also

found for the crosscorrelation between number of

canes and soil Ca (Fig. 4B).

The crosscorrelogram given in Fig. 4D shows the

spatial dependence between number of canes and clay

content, is stronger than that between number of canes

and soil Mg content presented in Fig. 4C. Similar

results were found for the crosscorrelation between

number of canes and soil AS (Fig. 4E).

Table 1

Linear and multiple regression analyses of the six sets of observations and values of R 2 coefficient

Equation R 2

Multiple regression

NC ¼ 90.561 þ 0.018P 2 0.127Ca þ 0.506Mg 2 0.899CC 2 3.667AS 0.373

NC ¼ 88.971 þ 0.023P 2 0.135Ca þ 0.442Mg 2 0.999CC 0.360

NC ¼ 47.850 þ 0.054P 2 0.414Ca þ 1.401Mg 2 7.319AS 0.253

NC ¼ 96.298 þ 0.010P þ 0.064Ca 2 1.026CC 2 3.337AS 0.364

NC ¼ 92.497 þ 0.0012Pþ0.262Mg 2 0.951CC 2 3.722AS 0.370

NC ¼ 91.184 2 0.092Ca þ 0.485Mg 2 0.913CC 2 3.736AS 0.372

NC ¼ 33.549 þ 0.074P 2 0.505Ca þ 1.483Mg 0.192

NC ¼ 94.170 þ 0.015P þ 0.035Ca 2 1.104CC 0.352

NC ¼ 46.647 þ 0.045P þ 0.141Ca 2 8.018AS 0.153

NC ¼ 91.011 þ 0.0051P þ 0.181Mg 2 1.057CC 0.356

NC ¼ 45.752 þ 0.0003P þ 0.677Mg 2 8.332AS 0.214

NC ¼ 97.852 þ 0.034P 2 1.043CC 2 2.938AS 0.361

NC ¼ 89.733 2 0.091Ca þ 0.414Mg 2 1.020CC 0.358

NC ¼ 47.708 2 0.319Ca þ 1.380Mg 2 7.719AS 0.244

NC ¼ 96.525 þ 0.080Ca 2 1.031CC 2 3.385AS 0.363

NC ¼ 92.506 þ 0.266Mg 2 0.951CC 2 3.727AS 0.370

NC ¼ 30.816 þ 0.067P þ 0.076Ca 0.080

NC ¼ 28.421 þ 0.010P þ 0.587Mg 0.133

NC ¼ 95.197 þ 0.029P 2 1.108CC 0.351

NC ¼ 48.276 þ 0.100P 2 7.299AS 0.139

NC ¼ 32.255 2 0.378Ca þ 1.460Mg 0.175

NC ¼ 94.474 þ 0.058Ca 2 1.114CC 0.352

NC ¼ 46.543 þ 0.214Ca 2 8.344AS 0.147

NC ¼ 91.039 þ 0.198Mg 2 1.057CC 0.356

NC ¼ 45.754 þ 0.678Mg 2 8.333AS 0.214

NC ¼ 102.602 2 1.116CC 2 2.550AS 0.353

Linear regression

NC ¼ 32.537 þ 0.096P 0.076

NC ¼ 29.687 þ 0.183Ca 0.066

NC ¼ 28.420 þ 0.622Mg 0.133

NC ¼ 99.601 2 1.164CC 0.346

NC ¼ 52.637 2 7.019AS 0.059

L.C. Timm et al. / Journal of Hydrology 272 (2003) 226–237 233



From the magnitudes of the CCF, we recognize the

potential for describing their distributions across the

transect of observations with state-space analysis,

verifying that its use leads to additional information

on the spatial variability of our soil–plant system.

Therefore, we are interested in evaluating how well the

applied space series analysis can describe the number

of canes series using various combinations of the

soil P, Ca, Mg, CC and AS series to better understand

how the number of canes is related to itself and to the

other soil properties in the spatial neighborhood.

Data in Table 2 show all the state-space equations

and values of their coefficients of determination (R 2)

from linear regressions between estimated and

measured values of number of canes NC (all

observations have been scaled using Eq. (3)).

The estimated values of NC and the f coefficients

were obtained using the ASTSA software, developed

by Shumway (1988).

Examining the results given in Table 2, the best

performance of all the state-space equations was

that in which we used soil P, Mg, CC and AS, with

the greatest R 2 coefficient of 0.579. In other words,

the local and regional variations of soil P, Mg, CC

and AS across the transect were the most important

variations related to the spatial distribution of NC.

Fig. 4. Crosscorrelogram functions (CCF) between: (A) number of canes NC and soil P; (B) number of canes NC and soil Ca; (C) number of

canes NC and soil Mg; (D) number of canes NC and soil CC; and (E) number of canes NC and soil AS.
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We were also interested in running the state-space

model for two different scenarios, to evaluate the

results when two (Fig. 5A) and three (Fig. 5B) out of

four yield observations were not considered for the

estimation, in order to identify how close the spatial

process of number of canes could be described based

on underlying processes manifested in the other

variables. According to Wendroth et al. (2001), this

implies that the weight of different variables that

contribute to the estimation changed and depended on

the available data. It can also be seen that the width of

the confidence bands increased as compared to the

case when all observations of number of canes were

included in the estimation of the state-space model

(Fig. 5C). For the case, when 50% of observations are

available, the updating step becomes possible at every

second location where number of canes is given. On

the other hand, when 25% of observations are

available, the updating step became possible at

every fourth location, only. This is the reason why

the width of the confidence band is greater than

compared to the other cases.

Comparing the different results from the scen-

arios presented in Tables 1 and 2, we note that the

state-space model using all of six data series

describes the number of canes ðR2 ¼ 0:502Þ better

than the equivalent multiple regression equation

ðR2 ¼ 0:373Þ: Using five of all series, the state-

space model describes the number of canes with

R 2 coefficient of 0.579 and the equivalent multiple

Table 2

State-space equations of number of canes (Fig. 2A) using the data presented in Fig. 2(B–F), and values of R 2 from linear regression between

estimated and measured values of NC. All observations have been scaled using Eq. (3)

Equation R 2

NCi ¼ 0.857NCi21 2 0.106Pi21 þ 0.026Cai21 þ 0.267Mgi21 þ 0.163CCi21 2 0.221ASi21 þ wNCi
0.502

NCi ¼ 0.876NCi21 þ 0.098Pi21 2 0.144Cai21 þ 0.133Mgi21 þ 0.0286CCi21 þ wNCi
0.532

NCi ¼ 0.971NCi21 2 0.005Pi21 þ 0.148Cai21 2 0.108Mgi21 2 0.016ASi21 þ wNCi
0.502

NCi ¼ 0.898NCi21 þ 0.352Pi21 2 0.279Cai21 þ 0.040CCi21 2 0.028ASi21 þ wNCi
0.521

NCi ¼ 0.817NCi21 2 0.094Pi21 þ 0.314Mgi21 þ 0.165CCi21 2 0.218ASi21 þ wNCi
0.579

NCi ¼ 0.785NCi21 2 0.197Cai21 þ 0.420Mgi21 þ 0.159CCi21 2 0.182ASi21 þ wNCi
0.521

NCi ¼ 0.951NCi21 þ 0.068Pi21 þ 0.048Cai21 2 0.079Mgi21 þ wNCi
0.483

NCi ¼ 0.920NCi21 þ 0.050Pi21 þ 0.002Cai21 þ 0.018CCi21 þ wNCi
0.488

NCi ¼ 0.902NCi21 þ 0.250Pi21 2 0.192Cai21 þ 0.027ASi21 þ wNCi
0.483

NCi ¼ 0.926NCi21 þ 0.069Pi21 2 0.025Mgi21 þ 0.019CCi21 þ wNCi
0.508

NCi ¼ 0.968NCi21 þ 0.123Pi21 2 0.084Mgi21 2 0.018ASi21 þ wNCi
0.457

NCi ¼ 0.925NCi21 þ 0.095Pi21 þ 0.082CCi21 2 0.115ASi21 þ wNCi
0.503

NCi ¼ 0.879NCi21 2 0.012Cai21 þ 0.097Mgi21 þ 0.027CCi21 þ wNCi
0.503

NCi ¼ 0.937NCi21 þ 0.160Cai21 2 0.094Mgi21 2 0.018ASi21 þ wNCi
0.489

NCi ¼ 0.959NCi21 þ 0.056Cai21 þ 0.062CCi21 2 0.088ASi21 þ wNCi
0.512

NCi ¼ 0.918NCi21 þ 0.103Mgi21 þ 0.099CCi21 2 0.134ASi21 þ wNCi
0.494

NCi ¼ 0.942NCi21 2 0.039Pi21 þ 0.087Cai21 þ wNCi
0.472

NCi ¼ 0.946NCi21 þ 0.127Pi21 2 0.085Mgi21 þ wNCi
0.489

NCi ¼ 0.912NCi21 þ 0.058Pi21 þ 0.019CCi21 þ wNCi
0.526

NCi ¼ 0.923NCi21 þ 0.062Pi21 þ 0.004ASi21 þ wNCi
0.477

NCi ¼ 0.938NCi21 þ 0.148Cai21 2 0.097Mgi21 þ wNCi
0.491

NCi ¼ 0.923NCi21 þ 0.050Cai21 þ 0.018CCi21 þ wNCi
0.524

NCi ¼ 0.929NCi21 þ 0.065Cai21 2 0.003ASi21 þ wNCi
0.446

NCi ¼ 0.904NCi21 þ 0.063Mgi21 þ 0.023CCi21 þ wNCi
0.530

NCi ¼ 0.914NCi21 þ 0.060Mgi21 þ 0.015ASi21 þ wNCi
0.492

NCi ¼ 0.972NCi21 þ 0.035CCi21 2 0.018ASi21 þ wNCi
0.478

NCi ¼ 0.915NCi21 þ 0.073Pi21 þ wNci 0.510

NCi ¼ 0.924NCi21 þ 0.065Cai21 þ wNci 0.501

NCi ¼ 0.920NCi21 þ 0.068Mgi21 þ wNci 0.501

NCi ¼ 0.958NCi21 þ 0.030CCi21 þ wNci 0.528

NCi ¼ 0.962NCi21 þ 0.026ASi21 þ wNci 0.528
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regression equation with R 2 of 0.372. Also, the

state-space model described the number of canes

better than the equivalent multiple regression using

four, three and two of all series in this study. In

summary, we concluded that all of the state-space

equations described the number of canes better than

the equivalent multiple regression equation. Also,

we identified that the soil CC series has an

effective contribution to describe the number of

canes in this study because it is related to the best

performance of each different scenario.

4. Conclusion

The relationships between the number of canes

per meter of row and available soil P, Ca and Mg,

clay content and aggregate stability of an area

cultivated with sugarcane, analyzed through a first

order state-space model and standard multiple

regressions, show that all used state-space (stochastic

model) equations described the spatial distribution of

the number of canes better than the equivalent

multiple regression equations. It was also identified

that the soil clay content spatial series has an

effective contribution in describing the number of

canes of the crop, because it is related to the best

performance in each different scenario. In summary,

the adoption of alternative analytical tools, like the

state-space approach, are adequate to describe the

spatial association between different variables along

space or time, and can be used to understand the

complex relationship between yield, soil physical and

chemical properties, since it is possible to underline

an influence that causes a change in their relation,

allowing for a management optimization of soil

resources and sugarcane yield.
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