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Abstract. Sampling field soils to estimate soil water content and soil water storage (S) is difficult due to the spatial
variability of these variables, which demands a large number of sampling points. Also, the methodology employed in most
cases is invasive and destructive, so that sampling in the same positions at different times is impossible. However, neutron
moderation, time domain reflectrometry, and, more recently, frequency domain reflectrometry methodologies allow
measurements at the same points over long time intervals. This study evaluates a set of neutron probe data, collected at
15 positions placed randomly along a coffee crop contour line, over 2 years at 14-day intervals. The temporal stability of
S was again demonstrated, so that wetter or dryer locations remain so over time, and the definition of such positions in the
field reduces the number of sampling points in future S evaluations under similar conditions. An analysis was made to
determine the minimum number of sampling points to obtain the average S of the field within a chosen level of significance.
Classical statistical analysis indicated that the 15 measurement positions could be reduced to four or even to one position to
obtain a reliable field S average. State–time analysis showed S estimations depend more on previous measurements
of rainfall P (52%) than on evapotranspiration ET (28%) and S (20%). The analysis also showed that ET was not
realistically estimated from previous measurements of S; it was more dependent on previous measurements of ET (59%)
than on P (30%) and S (9%). This statistical procedure showed great advantages over classical multiple regressions.
Future studies of this type should be carried out at regularly spaced observation points in a grid, in order to allow a 2-D and
3-D state–space–time analysis.

Additional keywords: multiple regression, neutron probe, sampling number, state–space, state–time.

Introduction

Soil water storage (S) in agricultural soil profiles is an important
parameter for a rational management of any crop, besides giving
information on environmental aspects of the water cycle. Spatial
variability of S, however, imposes serious problems when
determining average values over large areas, which are
needed for management of water availability to crops. The
variability of S is a consequence of the erratic rainfall input,
differences in crop stand, and natural soil matrix differences that
can occur over short distances as well as over large fields due to
soil genesis and topography. Knowledge of the characteristics
of the variability of S help us to understand and predict several
hydrologic processes (Western et al. 2004) and to improve soil
water sampling strategies (Warrick and Nielsen 1980).

Variability of soil physical and chemical properties is not a
new research topic. Since the first half of last century, the
problem of obtaining representative sampling of agricultural
fields has led to the development of new sampling schemes.
Initially, scientists based their strategies on classical statistical

concepts, which were later complemented with geoestatistics
and time–space series analyses, and more recently neural
networks (Hills and Reynolds 1969; Mohanty and Mousli
2000; Western et al. 2002; Timm et al. 2006; Hu et al. 2008).

The temporal stability of S measurements was first indicated
by Vachaud et al. (1985), who statistically determined the
presence of locations that systematically presented soil water
contents above or below the field average. Kachanoski and De
Jong (1988) and Moreti et al. (2007) also used this concept to
show the temporal persistence of spatial patterns of S. Reichardt
et al. (1997) suggested that part of the time stability of soil water
content measurements is due to systematic errors introduced
by soil water content calibration curves when indirect methods
of measurement are employed, such as neutron probes, time
domain reflectrometry (TDR), and frequency domain
reflectrometry (FDR). Hu et al. (2008) verified the time
stability of soil water content measurements made using FDR
at the soil surface layer of a hill-slope of the Loess Plateau in
China, and found significant correlations with several factors
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influencing landscape. More recently, Hu et al. (2010) presented
a new criterion to identify sites for S determinations based on the
mean absolute bias error.

Few studies have analysed the time variability of S as
affected by evapotranspiration and rainfall. A comprehensive
report was presented by Aboitiz et al. (1986), who developed a
methodology for estimating and forecasting soil water
depletion and evapotranspiration in irrigated fields, using a
time-varying state–space model, which we here call
‘state–time’. In this paper, we aim to contribute to the
improvement of water management practices of natural
ecosystems and perennial crops such as the coffee crop,
analysing a two-year series of S measurements, giving
emphasis to the time stability and spatial variability of this
set of data. A new perspective and deeper insight is made
through a state–time analysis to better understand the
temporal relations between S, rainfall, and evapotranspiration.

Materials and methods

We analysed the temporal variability of S (mm) data collected in
a coffee crop grown in Piracicaba, SP, Brazil (2284203000S,
4783800000W; 580m asl). Soil water contents q (i) were
measured along a horizontal domain xi (m) at 15 locations
(i= 1, 2, . . . , 15), and at five depths zk (m), 0.2, 0.4, 0.6, 0.8,
and 1.0m from surface (k= 1, 2, . . . , 5), every 14 days, at times tj
( j= 1, 2, 3, . . . , 52) over a 2-year period beginning 1 September
2003. Soil water content measurements obtained with a neutron
probe (model CPN 503 DR) were taken at irregular spacings
along a levelled contour line of the horizontal domain
corresponding to a coffee row, following the distribution of
five fertiliser plots arranged within a 0.2-ha coffee field. Details
of the fertiliser trial can be found elsewhere (Fenilli et al. 2007).
Measurements of q were made using aluminium neutron probe
access tubes installed below crop canopies. Coffee (Coffea
arabica L.) was of the cultivar Catuaí Vermelho (IAC-144)
and is a perennial crop, 3–5 years old during the experimental
period, which is the beginning of the yearly coffee production
cycles. The spacing between plants was 0.75m and between
rows 1.5m. Rows were kept bare chemically and manually, as
commonly done in coffee plantations.

The soil is a Rhodic Kandiudalf (Soil Survey Staff 1993),
locally called ‘Nitossolo Vermelho Eutroférrico’ (EMBRAPA
2006). The climate is of the Cwa type (Köppen 1931), with dry
winter.

Slow neutron counting data were transformed into soil water
contents using calibration curves established as suggested by
Reichardt et al. (1997), taken as valid over all depths. Soil
water storages at times j and positions i, Sj(i) (mm) for the
0–1.0m soil layer were calculated from qt, x(k) data by the
trapezoidal rule:

SjðiÞ ¼½1:5qi; jð1Þ þ qi; jð2Þ þ qi; jð3Þ þ qi; jð4Þ
þ 0:5qi; jð5Þ� 10005

ð1Þ

with Dz= 0.2m. Soil water contents qi, j(1) measured at the depth
0.2m (k= 1) were considered to cover a layer of 1.5Dz= 0.3m
which includes soil surface. The first measurement made at the
depth of 0.2m was evaluated to be deep enough not to lose slow

neutrons to the atmosphere. qi, j(5) measured at 1.0m (k= 5)
covered 0.5Dz= 0.1m since the lower level of the control
volume for water balances was set at 1.0m, and the total
depth L was taken as 1000mm to obtain data in mm. The
coffee root system was assumed not to reach depths below
z= 1.0m, which was confirmed by Silva et al. (2009).

In order to apply the following statistical procedures, Sj(i)
data were tested for normality with respect to space by
performing cumulative probability plots.

To reduce the number of observation points so that future
evaluations of the soil water status of this perennial coffee field
could be made more rapidly and without losing accuracy, two
approaches were used: (a) performing a time stability analysis to
determine which access tube can represent the overall average
of the field; and (b) establishing the minimum number of
observation points that would yield an average value within a
pre-established coefficient of variation. To verify the time
stability of the measurements, the approach proposed by
Vachaud et al. (1985) was used. For this, the relative
deviation dj(i)% of each Sj(i) realisation in relation to the
mean soil water storage SjðiÞ was calculated as follows:

djðiÞ ¼ SjðiÞ � SjðiÞ
SjðiÞ

� 100 ð2Þ

According to Vachaud et al. (1985), very small time
variations of dj(i) indicate a time stability of Sj(i), so that
consistently wetter or dryer positions (i) can be selected in
the field. Therefore, if time averages diðjÞ of the dj(i) values
are plotted in rank, it is possible to find out which sites present
systematically Sj(i) values below or above the position time
average Sj and also those sites that systematically present a
negligible diðjÞ and, therefore, represent Sj.

To estimate the number of observations N needed in a new
sampling event to obtain a mean value St(i), within a chosen
deviation (%) of the estimated mean value, the suggestion of
Warrick and Nielsen (1980) was applied:

N ¼ t2as
2d�2 ð3Þ

where ta is the value of the Student t-distribution considering the
level of significance a (for a= 5% the t value is 1.96) for infinite
degrees of freedom; s2 is the variance of a previous sampling
event St(i) made with n (15 in our case) replicates; and d any
desired deviation from the mean, for example [0.5, 1, 2%, . . . of
StðiÞ]. Equation 3 assumes that the samples are independent, the
central limit applies, and that the true mean deviation s can be
represented by the standard deviation s.

In a second step, the time variability structure of the Sj data
was studied using the state–time approach (Shumway 1988;
Nielsen and Wendroth 2003), which provides opportunities for
a suitable identification of temporal relations between
soil–atmosphere–plant variables taking into account their
temporal association. The state–time analysis characterises the
state of a system (set of p unobservable variables) at a time t to
its state at a time t–j, j= 1, 2, 3, . . . , 52, in our study. For j= 1, the
state–space approach is described as follows (called state
equation):

X t ¼ fX t�1 þ vX t ð4Þ
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Xt and Xt–1 being the state vector (a set of p unobservable
variables) at time t and t – 1; f a p� pmatrix of state coefficients,
which indicates the measure of the regression; and wXt

noises of
the system for t= 1, 2, 3, . . . , j. Noise values are assumed to have
zero mean, not being autocorrelated and being normally
distributed with constant variances. If these X variables were
observable, this would be the usual structure of a vector
autoregressive model, in which the coefficients of the matrix
f could be estimated by multiple regression techniques, taking
Xt and Xt–1 as the dependent and independent variables,
respectively. In the case of the state–time model, however,
the true state of the variables is considered ‘embedded’ in an
observation equation:

Y t ¼ AY t�1 þ nY t ð5Þ
the observation vector Yt being related to the state vector Xt by an
observation matrix A (usually known as, for instance, an identity
matrix, p� p) and an observation noise vector nYt

, also
considered of zero mean, not autocorrelated and normally
distributed. The noises wXt

and nYt
are assumed to be

independent of each other. The state coefficients of the matrix
f and noise variances of Eqn 4 are estimated through a recursive
procedure given by Shumway and Stoffer (1982). According to
Hui et al. (1998), if the Xt data are scaled with respect to their
mean (m) and standard deviation (s), as follows:

xt ¼ ½X t � ðm� 2sÞ�=4s ð6Þ
the transformed values xt become dimensionless with mean
m= 0.5 and standard deviation s= 0.25. This transformation
allows state coefficients of the matrix f have magnitudes
directly proportional to their contribution to each state
variable used in the analysis. The software Applied Statistical
Time Series Analysis (ASTSA) (Shumway 1988) was used for
applying the state–space approach.

Concomitantly to Sj(i) measurements, Silva et al. (2006)
evaluated time series of evapotranspiration ETj(i), rainfall
Pj(i), supplementary sprinkler irrigation Ij(i), surface runoff
ROj(i), and soil water drainage fluxes Qj(i) below the 1.0m
depth, to establish complete water balances, which were used in
the state–time and multiple regression analyses. Irrigation was
applied only during the dry winter, in just a few events when the
available water capacity reached ~25% of its maximum. For the
analysis, I was added to P. For a few 14-day intervals with no
rainfall during the rainy season, a negligible value of P= 0.1mm
was assumed for this variable, so that the state–time analysis
could be performed. It is important to mention that classical
multiple regression is based on mean values of each variable
throughout the time being investigated and that the magnitudes
of each variable at a given time compared to their respective
values at a previous or future time are neglected.

Coefficients of variation (CV), cumulative probability plots,
and rank plots were also used in the analysis (SAS and R
statistical programs).

Results and discussion

Soil water storage St(i) data were normally distributed for all 52
measurement dates, as exemplified in Fig. 1 through cumulative
probability plots for a wet period (31 January 2005) and for a dry

period (1 September 2003). These spatial data presented space
coefficients of variation for fixed times j in the range 1.1–5.9%,
indicating that the variability in space can be considered low.

Ranges of soil water storage changes DSt(i) shown in Fig. 2,
in which positive values represent maximum soil water
recharges occurring in 14-day intervals and negative values
represent soil water maximum depletions in 14-day intervals,
reflect the great time variability of St(i) data observed during the
2 years in this field. Such plots illustrate well the spatial
variability of S measurements made in agricultural fields, as
in this case for a coffee crop field, justifying the search for good
and stable averages of S for water management purposes.

For future measurements of St(i) in the same or other fields of
similar condition, the minimum number N of observation points
was calculated for chosen precision levels according to Eqn 3.
Selecting three dates for which the St(i) value is of the order of
300mm: j= 10, S10(i) = 302mm, s10(i) = 18mm; j= 20,
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Fig. 1. Cumulative probability plots of soil water storage St(i) for two
selected dates.
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Fig. 2. Ranges of soil water storage changes DSt(i) observed for the 15
neutron probe access tubes during the 2-year observation period, in a coffee
crop field.
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S20(i) = 296mm, s20(i) = 8mm; and j= 30, S30(i) = 285mm,
s30(i) = 3mm; for which st(i) were maximum, medium, and
minimum, the deviations (d) from the mean are 5.9, 2.7, and
1.1%, respectively. For new samplings according to Eqn 3, if the
desired StðiÞ of 300mm should be evaluated within 0.5, 1, or 2%
of the correct value, with an average st = 8mm, the number of
samplings would be 56, 14, and 4, respectively. For this
example, the only viable choice to reduce the number of
sampling points is to accept a deviation of 2% and make
future measurements in four access tubes.

In terms of time stability of the measurements, the rank plot
presented in Fig. 3 shows that position 3 best represents the
mean StðiÞ over the two years of observation, which means that
future observations of StðiÞ could be performed at this single site
or at four sites as discussed above (sites 2, 6, 3, and 10, Fig. 3),
with much lower coefficients of variation than 2% used in Eqn 3,
since the chosen four points present the least deviation from the
mean. Such measurement would represent the mean soil water
storage of the whole field, greatly simplifying future
experimental field work. This reduction of observation points
is very important for long-term experimentation in natural
ecosystems or perennial crops such as coffee, when St(i) is
observed over long periods of time (years), e.g. Silva et al.
(2006) and Moreti et al. (2007). It is important to recall that in
the establishment of field water balances, the soil components
are the more laborious measurements.

A great shortcoming of the time stability as a criterion to
reduce the number of sampling points is the need of
representative previous information in space and time, in
order to be able to make significant rank plots of mean
deviations from the mean. Therefore, the approach presented
here is more suitable for long-duration experiments in which
costly and time-consuming variables are measured.

As discussed below, the state–time analysis is a step ahead of
the previous discussion since it allows a better insight of the
relations among the climate variables that determine S. So, in
order to better understand the temporal relations between S, P,
and ET, a discussion is made comparing the state–time analysis
to the classical multiple regression using the same state
variables. Figure 4a and b shows the multiple regression and

state–time equations and the value of their coefficients of
determination (r2) from linear regressions between estimated
and measured values of scaled (Eqn 6) soil water storage.
Classical multiple regression is based on mean values of each
variable throughout the time being investigated, in which the
magnitudes of each variable at a given time compared with their
respective values at a previous or future time are neglected, so
that no more 35.8% of the variance of the biweekly measured
soil water storage data was explained from the measurements of
precipitation and evapotranspiration (Fig. 4a). Estimated values
by regression are much less variable than those measured, and
consistently underestimate the larger, and overestimate the
smaller, measured values.

When the temporal associations among soil water storage,
precipitation, and evapotranspiration data were considered,
99.8% of the variance of S was explained from the use of the
state–time analysis (Fig. 4b). We note that nearly 70% of the
previous value Si–1 contributes to that of Si while preceding
values Pi–1 and ETi–1 contribute only 8 and 20%, respectively.

The major experimental consideration influencing the utility
of state–time analyses is the time interval between successive
measurements that allows the possibility of state variables to be
temporally associated. In other words, measurements taken
during very short time intervals will tend to be autocorrelated
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using (a) classical multiple regression and (b) state–time analysis.
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or cross-correlated with each other. However, with increasing
time, the state variables change their magnitudes as
environmental conditions change. We know that a water
balance for a given soil profile is the result of five processes
that occur as a function of time: precipitation plus irrigation,
surface runoff, evapotranspiration, storage of water in the soil
profile, and the drainage of water from the soil profile. Each of
these processes quantified by Silva et al. (2006), who provide
data for this study, indicated that surface runoff was negligible
over the 2-year period and that the drainage of water from
the soil profile has yielded accurate measurements of water
storage Si in the profile. Hence, neglecting surface runoff, the
use of only three state variables (S, P, and ET) in the state–time
analysis accounts for the physical processes responsible for
a quantitative estimate of S provided that the amounts of
water that eventually drain from the 1-m soil profile from
occasional large rainfalls can be robustly accounted for in the
state variable P. The temporal autocorrelation and cross-
correlation functions given in Table 1 indicate that ET, S, and
P have autocorrelation lengths of 3, ~2, and <1 lag, respectively.
In other words, values of ET are related to each other during
more than three consecutive sampling dates (42 days), those
of S during no more than two consecutive sampling dates
(28 days), and those of P are essentially not related to each
other between consecutive sampling dates (14 days). All three
values of lag are reasonable, including that for precipitation.
Indeed, the general nature of rainfall is more seasonal and does
not consistently repeat its relative magnitude with a 2-week
periodicity through a 2-year period.

Examining the cross-correlation coefficients in Table 1, we
are not surprised to find that ET is related to P for more than three
consecutive sampling dates (42 days) and that S is related to P
for at least two consecutive sampling dates (28 days). The fact
that ET and S showed essentially not to be related to each other
between sampling dates is not obvious, since on many occasions
the actual value of ET was much below the potential value.
However, during the 2-year period, regardless of the daily and
biweekly fluctuations of local weather conditions, every effort
was made to irrigate the field in a timely manner to provide
adequate amounts of water stored in the root-zone.

There are several methods available to examine the reliability
of state–time analyses (see for example, Shumway and Stoffer
2000). Here, we choose (on the basis of the information in
Table 1) to observe the impact of omitting increasing numbers of
observations from the calculations of the state variable being
estimated. An example is given in Fig. 5 where the S is estimated

with all measurements of P and ET, but with increasing numbers
of its biweekly measurements omitted from the state–time
analysis.

Figure 5a illustrates the results when one-half of the
observations of soil water storage were not considered in the
calculations. Comparing Figs 4b and 5a, it can be seen that
the coefficient of determination r2 decreased slightly from 0.998
to 0.957 and that the width of the confidence intervals increased.
At each time step when a measured value of S is omitted from
the calculation, its forward prediction cannot be compared to
its observation, and hence, an update based on its temporal
association is precluded and causes a larger confidence interval.

State–time estimates in Fig. 5b made while ignoring two of
every three observations of soil water storage are not as good as
those illustrated in Fig. 5a. Nevertheless, a linear regression
between state–time estimated and measured values of S yielded
a coefficient of determination r2 = 0.834. However, notice that
approximately five values omitted in the calculations fall
outside of the confidence interval as a result of the state–time
analysis judging they did not belong to the distribution of S
values used in the calculation.

State–time estimates in Fig. 5c made while ignoring three of
every four observations of S are definitely not reliable. A linear
regression between estimated and measured values of S yielded
a coefficient of determination r2 of only 0.296, and ~16 values
omitted in the calculations fall outside of the confidence interval.
There are two primary reasons why the state–time estimates
illustrated in Fig. 5c do not agree with reality. First, during a time
period of 56 days (4 lags and nearly equal to 2 months), values of
soil water storage are no longer temporally related to each other
during the 2-year experiment (Table 1)—a requirement of
state–time analyses. Second, the amounts of water that
eventually drained from the 1-m soil profile from large
rainfalls robustly accounted for in the state variable P
occurring within time spans of 56 days could not be ignored.
Note in Figs 4b, 5a–c, as the relative number of ignored
observations of S increases, the magnitude of the transition
coefficient of Si–1 decreases with estimates of Si depending
progressively on the values of Pi–1. In other words, with
fewer and fewer temporal observations of Si available,
reliable estimates of Si depend more and more on the
temporal association between S and precipitation. This
dependence is entirely reasonable since changes in S are
generally related directly to amounts of precipitation
infiltrating the soil surface during relatively short time
periods. Notice, however, that no such consistent trend was

Table 1. Autocorrelation and cross-correlation coefficients for state variables soil water storage S,
precipitation P, and evapotranspiration ET

lag hB Autocorrelation coefficient r(h)A Cross-correlation coefficient rc(h)
A

S P ET S v. P ET v. S ET v. P

0 1 1 1 0.595 0.153 0.359
1 0.551 0.163 0.558 0.370 0.005 0.507
2 0.257 0.119 0.444 0.203 –0.053 0.316
3 0.038 0.024 0.344 0.033 0.036 0.375
4 –0.005 0.082 0.185 –0.050 0.159 0.072
5 0.025 0.081 0.099 –0.027 0.126 –0.028

AThe 95% significance level of r and rc is 0.2745.
BA lag of h= 1 is equal to 14 days.
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manifested during these short time periods by the transition
coefficients of ETi–1. This fluctuation is reasonable in that
changing local weather conditions can easily cause major
shifts in ET that do not impose major changes in average soil
water storage. We verify the previous statement by examining
Fig. 6 where the mean values of ET throughout the time
investigated are related by simple linear regression to the

average amount of water stored in the soil profile. This
Figure indicates that measurements of ET at any given time
are not realistically estimated by the amount of water stored
within the root-zone of the soil profile of the coffee crop. Yet, S
is generally sparingly and inadequately monitored in agricultural
fields to assure that there is sufficient water within the root-zone
for the crop to sustain an adequate transpiration rate for optimal
growth and harvestable yield.

Rather than repetitively measuring the water stored in the soil
profile to ascertain ET across an agricultural field or even at a
location designated as representing the mean (access tube
number 3 according to Fig. 3), a common practice has been
the measurement of water lost from a Class A evaporation pan
(Allen et al. 1998). This procedure is convenient and
inexpensive, but does not necessarily relate to quantitative
measures of S at positions related to mean values for the
field, or vice versa.

With measurements of mean values of ET, S, and P
laboriously made biweekly in this study, we are able to
examine the estimation of ET made by classical multiple
regression and state–time analyses. Estimations of ET using
classical multiple regression based on mean values of each
variable throughout the time being investigated can be
compared with measured values in Fig. 7a. We note that no
more than 13.5% of the variance of the biweekly measured
evapotranspiration data was explained from the measurements
of soil water storage and precipitation. We also note that
variations of ET with a coefficient of 0.415 were more related
to fluctuations of precipitation than those of soil water storage,
with a coefficient of only 0.095. A similar relationship was also
apparent in the state–time analysis presented in Fig. 7b, where
the transition coefficient of S was only 0.090 while that of P was
larger, having a value of 0.310. Estimated values of ET from the
state–time analysis approached those of the measured values,
and manifested a coefficient of determination of 0.887.
Nevertheless, eight of the 51 estimated values of ET fell
outside the 95% confidence interval.

In Fig. 8 where ET is estimated with all measurements of S
and P, but with one-half and three-quarters of its biweekly
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Fig. 5. Soil water storage measured biweekly for 714 days estimated from
measurements of precipitation and evapotranspiration with (a) one-half,
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omitted from the state–time analysis.
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using classical linear regression.
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measurements omitted from the state–time calculations, the
coefficient of determination decreases to 0.719 and 0.544.
Nine of the 51 estimated values of ET in Fig. 8a and 21 of
the 51 estimated values of ET fell outside the 95% confidence
interval.

Noting that the contribution from neighbouring values of S
decreases from 9% in Fig. 7b to a mere 2% and 3% in Fig. 8a
and b, respectively, we learn that for the case of this dataset from
a coffee crop, the temporal variations in ET are not physically
caused by variations of S. Therefore, we examine the
relationships between the two state variables ET and P in Fig. 9.

Classical regression between ET and P throughout the time of
the investigation yielded a coefficient of determination of only
0.129 (Fig. 9a). On the other hand, state–time estimates were
much more reliable, with a coefficient of determination of 0.864
(Fig. 9b). We expected that the state–time analysis would be
superior because ET and P are significantly cross-correlated with
three temporal lags and ET has an autocorrelation length of three
lags. We note that each preceding value of both state variables
more or less equally contributes to the estimated value of ET. By
omitting one out of two values of measured ET (Fig. 10a) and
three out of four values of measured ET (Fig. 10b) in the
state–time analyses, we learn that the coefficient of
determination between estimated and measured values of ET

reduces from 0.864 (Fig. 9b) to 0.694 and 0.554 (Fig. 10a and b,
respectively). Without having neighbouring values of ET for the
updating procedure in the calculation, the contribution from the
neighbouring cross-correlated measured P is inadequate to
capture estimates of ET within an ever-increasing confidence
interval. In other words, state variables physically linked to the
cause of ET fluctuations were not monitored.

During 14-day intervals, what physical processes in addition
to precipitation alter the amount of water transpired from the
crop and evaporated from the soil surface? From the above
information, rainfall (and to a very limited extent, soil water
storage) is the only parameter that accounts for some of the
14-day variability of ET throughout each year, as illustrated in
Fig. 11. Patterns of ET for both years are very similar, and indeed
have similar spectra yielding significant coherence at several
temporal frequencies not presented here. In order to identify
the cause of this similarity as well as to improve estimates of
evapotranspiration as a function of time, it would be necessary
to measure at least one other variable or parameter physically
responsible or linked to evapotranspiration, e.g. air temperature,
relative humidity, cloudiness, wind velocity, soil temperature,
distribution of water within the soil profile, vegetative and
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productive stage of the crop, insect damage, plant diseases, and
plant nutrient availability, mainly (Penman 1963; Allen et al.
1998).

Previous and present outlook

As mentioned in the Introduction, the estimation of S is a
difficult task due to the spatial and temporal variability of
field soils and their local environment. This presentation
focused on characterising the average amount of water stored
in the topsoil across a specific field measured at time intervals of
14 days. Because most coffee plant roots were limited to a depth
of 1m within the soil profile, soil water designated as that
available to the coffee crop was calculated from soil water
content measurements from the soil surface to 1m deep. The
field was irrigated only when it was deemed necessary, i.e.
whenever the stored water in the profile reached <20% of its full
capacity. This irrigation strategy, embracing the concept that the
spatial variation of S was invariant in time, allowed the analysis
of the distribution of soil water storage measurements within
the coffee field to ascertain a unique location consistently
manifesting the mean soil water storage regardless of its time
of measurement. In addition, the minimum number of locations
sampled to achieve an average value within prescribed level of

significance was based on the assumption that the sampled
values were normally distributed. This strategy has been
suggested during the past 25 years. Various other closely
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Fig. 11. Biweekly measurements of evapotranspiration during 2003–04
and 2004–05 v. time commencing the first week of September.
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related strategies that include the measurement of a threshold
minimum soil water storage, a specified integrated matric
potential within the root-zone of a plant, and minimum soil
water content or matric potential at a specified position within
the root-zone were explored and adopted since 1950 (Nielsen
and Kutílek 1994). These strategies ignored the spatial distances
between sampling locations, and also ignored the temporal
correlations between successive soil water storage sampling
campaigns. All of them sought and relied on the ability to
find a ‘good average’ to determine when to irrigate a crop.
Few strategies were developed to ascertain how seldom
measurements could be taken to ascertain when to irrigate for
optimal crop production. As a result, published literature will
testify that excessive energy and time were spent determining
when to irrigate rather than to determine the relative benefit of
having irrigated. Hence, the second half of this presentation
focused on the temporal association of S, P, and ET at a fixed,
hypothetical location assumed to represent the entire field
during 14-day time intervals empirically selected for their
measurement. The results of this tedious, and time- and
energy-consuming, sampling program indicate that the
amount of water stored in the soil profile during the
empirically designated, 14-day-interval sampling program has
little to do with temporal variations of evapotranspiration.
However, from locations sampled across the coffee field, it
was apparent that the mean values of ET during the 14-day
sampling intervals are temporally related to P, not S, and not
quantitatively related to infrequent irrigations, including those
made in September.

After completing this experiment, we are left with the
question: When and where do we take what kind of other
measurements to better manage the production of coffee as
well as gain information on the environmental impact on its
production? During the past two decades, the concept of site-
specific farming, precision farming or precision agriculture, has
emerged, which emphasises that the quality and quantity of crop
production can be improved by simultaneously managing the
temporal and spatial variations of crop-dependent processes
across an agricultural field during crop growth. In other
words, an agricultural field planted to one crop is not
considered a unit to be managed or treated uniformly.
Instead, based on its local soil and environmental properties,
and the nature of physical and biological processes, it is
managed as an ensemble of distinct spatial domains each
monitored over appropriate scales of space and time. Many
methods of statistical analysis (geostatistics, regionalised
variable analysis, applied time series, etc.) are available for
examining experimental data observed at different points in
time and space relative to describing and understanding
soil–plant–atmosphere processes within a farmer’s field.

Here, we illustrated the utility of state–time analysis to
examine the temporal variation of the crop-dependent process
of ET. We analysed ET, considering it to be a random variable,
and statistically treated its temporal variation as a function of the
time between repetitive observations within a 2-year domain. At
any given time, its value was considered to be identical at every
location within the experimental area. Although such a
consideration is not realistic because ET actually varies from
one location to the next throughout the entire spatial domain, it is

consistent with the common practice of irrigating a field with a
given amount of water or also assuming that the rain measured at
a specific location falls uniformly across the field.

Having briefly illustrated the utility of state–time analysis in
this simple experiment to examine the temporal variation of the
crop-dependent process of ET within a field, it is clear that many
related choices for meaningful field research remain open for
immediate application.

One such choice taken by several researchers in the past was
to make repeated-measurements of S, ET, and P at the same
spatial interval across the experimental area for at least one time.
The benefit of state–space analysis to examine the spatial
processes of these crop-dependent variables at the time of
their measurement should be realised by considering each of
them to be a random variable treated statistically, with their
spatial association and variation being a function of the distance
between their measurements. A spatial soil process is the change
of a variable or a vector consisting of several variables across a
spatial domain caused by localised conditions; for example, the
spatial process of soil water storage considered across a field can
be mainly influenced by spatial changes in soil type, topography,
vegetation, rainfall, ET, and management.

Obtaining measurements of S, ET, and P repetitively across
an experimental area at variable spatial intervals for numerous
times as presented here provides another choice. Using
2-dimensional state analysis in both time and space, a
complete analysis of the progression of any or all of the three
variables occurring at any location in the field at any time during
the 2-year experiment would be highly informative. In other
words, the analysis would provide ‘site-specific’ and ‘time-
specific’ management information without the disadvantage
of considering average values across the field or during
each year.

Further choices could be realised when measurements of
coffee plant parameters—locally available soil nutrient and
micro-environmental conditions related to potential coffee
bean yields—are repeatedly and frequently made across the
field during each growing season. With this information, a 2-
dimensional state analysis provides quantitative guidelines
during the growing season to better manage the crop within
specific local field domains to achieve higher yields without a
deleterious impact on soil and water resources. As a result,
management of the field would be more efficient and
sustainable.

Conclusions

Following the most commonly used classical procedure of
randomisation to identify sampling locations within a field of
small replicated plots, we compared the results of two analyses:
classical statistics and one application of applied time series
(state–time analysis) to examine the temporal variability of soil
water storage in a coffee field. Classical statistical procedures
indicated that randomly spaced estimates of S averaged
across the field can be obtained with a deviation of 2% of
the mean using only four of the 15 sampled locations. Time
stability analysis of S showed that a single specified location
would represent the average value of S in relation to the
average of the 15 locations, and if a standard deviation is
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required, four specific locations would yield an average with a
deviation of only 0.3%.

In contrast to classical multiple regression analysis, the
state–time analysis showed that Si was more dependent on
Pi–1 (52%) than on ETi–1 (28%) and Si–1 (20%), indicating
the low temporal dependence of S in relation to previous
measurements. Additionally, the analysis showed that ETi
was not realistically estimated from Si–1 measurements
inasmuch as it was more dependent on previous estimations
ETi–1 (59%) than on Pi–1 (30%) and Si–1 (9%). With P and ET
easily obtained from automated weather stations, the state–time
analysis indicated that S measurements made every 14 days
could be reduced to monthly measurements, and that Si
measurements would still be predicted with an r2 of 0.957,
significantly reducing future field work.

We, as well as other researchers with whom we
communicate, are conducting field experiments in which
measurements of S are being taken at regular intervals in two
spatial directions across a cultivated field at specified times
that allow a 3-dimensional space–state–time analysis. These
experiments should provide improved management without
depending on traditional, randomly treated small plots
supposedly applicable to an entire field without any sort of
experimental verification.
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