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THE WATER BALANCE
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Water Balance Equation
P+I=E+T+D+RzAS

P = Precipitation

| = Irrigation

E = Evaporation

T = Transpiration

D = Deep drainage

R = Runoff (or Run-on)

AS = Soil moisture content change
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MEASURING PRECIPITATION
OR IRRIGATION
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MEASURING RUNOFF
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Infiltration

Double and Single Ring Infiltrometers

Penn State Extension




Infiltration
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MEASURING DEEP DRAINAGE
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Drainage: Pan lysimeter — zero tension

Measures only free water flow up
. n‘ W' l’

Can convert to depth (volume/ s R
area of pan) A | ===

and water balance measurements

=
N “
Used for water quality sampling S ( \
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Drainage: Passive Wick Lysimeter - tension

Measures free water and matrix
flow up to tension represented by
height of wick

Can convert to depth (volume/
area of pan)

Used for water quality sampling
and water balance measurements

Tl asusrtars view of wick vsimeter

Courtesy of John Toth (2003)
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Drainage — installing wick lysimeters
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Drainage — installing wick lysimeter
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Drainage: Installing wick lysimeter
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Non-Pan Passive Wick Lysimeter

Affordable

Easy to install

Measures free water and matrix
flow up to tension represented by
height of wick

Cannot convert to depth

Used for water quality sampling
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Suction Lysimeter

Affordable

Easy to install

Measures
flow up to
height of

Cannot co

Used for
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ET: Weighing Monolith Lysimeter
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Some large monolythic weighing lysimeters

Location Soil type Preserved
vegetation

Coshocton, OH Silt loam over rock Sod

Dover, CO 7.3 1.2 22.7 Tight uniform silt Prairie grass

Seattle, WA 10.8 1.2 28.9 Gravelling loamy Douglas fir tree
sand

Tucson, AZ 12.6 1.0 27.3 Fine gravelly sandy Creosite bush
loam

Bushland, TX 9.0 2.3 45.0 Clay loam None

New South Wales, 10.8 1.5 36.0 Topsoil over Eucalypt

Australia massive clay

Richland, WA 2.25 1.7 6.0 Silty loam Sagebrush and

bunchgrass

Schneider and Howell. Large, monolythic, weighing lysimeters
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Gravimetric water content
0,=M,/ M,
O,,= gravimetric water content (Mg Mg)
M,, = mass of water (Mg) lost on drying (usually 24 hrs at 105 °C)
M, = mass of dry soil (Mg)

Standard method — all other methods are calibrated against this

For water balance calculations need depth or water lost

0,=(M, /p, )V,

O, = Volumetric water content (m3m3)
p,, = density of water (assumed to be 1.0 Mg m-3)
V, = Volume of sample (m3)

Penn State Extension



Volumetric water content

0,=(0./p,) xp, = O, % p, (assuming density of water = 1.0 Mg m-3)
p,= M, /V, = dry bulk density of sample (Mg m3)

Example

0, =0.14 Mg Mg

P,=1.6 Mg m3

0,=0.14x1.6 =0.22 m3m?3

It is important that bulk density be determined on same sample as moisture
content, b/c it is one of the most spatially variable soil properties

Penn State Extension



Calculation of water content of volume of soil
W,=0,d,+0,d,+0,d;

0,, = Volumetric water content of layer x (m3m3)
D, = thickness of layer x (m)

Penn State Extension



How much water can a soil hold?

PAW = Plant Available Water = Water content at ‘field capacity’ — water content at
‘wilting point’
Typical field capacity, wilting point, and PAW values (m3 m-3) for different soil textures

m Field capacity Wilting point m

Coarse sand 0.06 0.02 0.04
Fine sand 0.10 0.04 0.06
Loamy sand 0.14 0.06 0.08
Sandy loam 0.20 0.08 0.12
Light sandy clay loam 0.23 0.10 0.13
Loam 0.27 0.12 0.15
Clay loam 0.28 0.13 0.15
Clay loam 0.32 0.14 0.18
Clay 0.40 0.25 0.15
Self-mulching clay 0.45 0.25 0.20

Penn State Extension
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Water retention in soil Wilting point (-1500 kPa)

Field capacity (-10 to -30 kPa)

Saturated (0 kPa)
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Plant available water

Field Capacity

30 -
Plant Available Water

20 +

10 1

Wilting Point

Sand Sandy Loam Silt Clay Clay
loam loam loam

Unavailable water

From Brady and Weil. 1999. The Nature and Properties
of Soil. Prentice Hall



Accuracy, precision, variability

Precision = Variability of repeated measures in place (Standard Deviation) -
measurement error

Accuracy = How close measured value is to actual water content
Variability = Real variability of water content in field

Gravimetric moisture content: easily more accurate than 0.001 Mg Mg

(accuracy of balance, water lost between sampling and weighing, inadequate
drying time, reabsorption of water by sample)

Volumetric moisture content: easily more accurate than 0.01 m3 m-3

(inexact trimming of sample, compression or dilation during sampling, errors in
sampling volume)

Penn State Extension



Factors affecting field variation in
soil moisture at different scales

Gravel content

Bulk density variation
Water content variation
Time since wetting
Macropores/cracks
Proximity to plant roots
Microtopography (furrow,
wheel track)

Landscape position Aspect (N vs S facing)
Effects of ponding, runoff  Soil type

Proximity to irrigation Soil substrate
Variation in soil texture Land use (type of
Proximity to trees vegetation)

Type of plants

IAEA 2008. Field estimation of soil water content. Training Course Series 30
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Surrogate measures used by different soil moisture sensors

Neutron moisture meter

Thermal sensors
Time domain
reflectometry

Campbell FDR

Capacitive sensors

Conductivity sensors

Tensiometers

Count of slow neutrons

Heat conductivity

Travel time of
electromagnetic pulse

Repetition time for a
fast rise time
electromagnetic pulse

Frequency of oscillating
circuit

Electrical conductivity
of porous medium in
contact with soil

Matric and
gravitational soil water
components

Penn State Extension

Source releases fast neutrons, slowed down by collisions with
H. Count of slow neutrons measure of O,

Amount or rate of heat transmitted through soil affected by O,

Travel time of electromagnetic pulse along wave rods, is
affected by bulk electrical permittivity of soil (BED). ©, affects
BED.

Same as TDR

Oscillating current induced in circuit, part of capacitor
arranged so that soil becomes part of dielectric field affecting
electromagnetic field. ©, influences the frequency of
oscillation to shift.

Current between two electrodes in porous material is function
of conductivity, a measure of soil water tension

Capillary forces retaining water in soil pores create negative
pressure in water-filled tube connected to porous cup. This is a
measure of soil water tension.




Characteristics of some types of soil

water sensors

Neutron 30,000 cm?3 (wet soil)
28,000 cm?3 (dry soil)
TDR Soil volume along probe

rods, approx 10 mm to
the side of plane of rods

Capacitive, Highly variable — usually
FDR 20 mm from sensitive
face or sensors

Conductivity Will equilibrate with

(e.g. gypsum)  small volume of soil
(e.g. 500 cm?3 in wet,
much smaller in dry soil)

Cl, B, Fe, C

Salt, EC,
temperature

Salt, EC, clay type,
clay%, temperature

Temperature, salts
other than gypsum

Penn State Extension



Neutron Moisture
Meter

Fast neutrons emitted from radioactive
source (241Am/9Be) slowed down when
they collide with particles having the same
mass as a neutron (i.e., protons, H)
building a “cloud” of
“thermalized” (slowed-down) neutrons.

Since water is the main source of
hydrogen in most soils, the density of
slowed-down neutrons formed around the
probe is nearly proportional to the volume
fraction of water present in the soil.

Linear calibration of slow neutron count vs
volumetric water content

Penn State Extension




Neutron Moisture Meter

Advantages Disadvantages

Robust and accurate (+0.005 m3m3) Safety hazard.

Little soil disturbance Radioactive certification needed
Inexpensive per location Requires soil-specific calibration
One probe allows for measuring at Heavy, cumbersome instrument

different soil depths

Takes relative long time for each
Large soil sensing volume (sphere of  reading
influence with 10-40 cm radius)

Readings close to the soil surface are
Not affected by salinity or air gaps difficult and not accurate

Stable soil-specific calibration Manual readings; cannot be
automated due to hazard

Expensive to buy equipment

Penn State Extension




Dielectric Methods

Estimate soil water content by measuring the soil bulk
permittivity (or dielectric constant), Kab,

Kab determines the velocity of an electromagnetic wave or
pulse through the soil.

Dielectric constant of liquid water (Kaw = 81) is much larger
than that of the other soil constituents (e.g. Kas = 2-5 for
soil minerals and 1 for air).

Therefore, permittivity can be related to water content.

Penn State Extension




Dielectric Methods

Method Principle

Time Domain Reflectometry Time of electromagnetic signal to travel
back and forth transmission line

Capacitance Charge time of capacitor

Frequency Domain Reflectometry Frequency of oscillation

Amplitude Domain Reflectometry Amplitude of oscillation

Phase Transition Sinusoidal wave shift

Time Domain Transmission Time to travel trough transmission line

Penn State Extension



Dielectric methods

Advantages Disadvantages

Easily automated Equipment can be expensive due to

_ _ _ _ complex electronics
Wide variety of probe configurations

i) se) dheunsmes e & Potentially limited applicability under

installation (TDT/Phase Transition) highly saline conditions or in highly
conductive heavy clay soils

Relatively insensitive to normal

salinity levels Soil-specific calibration
Can provide simultaneous Relatively small sensing volume
measurements of soil electrical (about 1.2 inch radius around length

conductivity/bulk density. of waveguides)

Sensitive to air pockets

Penn State Extension



Time Domain Reflectometer - TDR

Time of electromagnetic signal to travel back
and forth transmission line
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Frequency Domain — Capacitance and FDR
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FD probes: a) Capacitance (plates imbibed in a silicon board);
b) Capacitance (rods); and c) FDR (rings). Charge time of capacitoror Frequency of
oscillation
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Amplitude Domain Reflectometry -ADR
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Phase Transition
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Time Domain Transmission
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Water content (m> m™)
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EM Field Geometry

e Field in uniform medium —
uniform geometry:

e Field in medium with more
conductive (wetter) ped —
geometry changed.

Evett et al. (2009)

Penn State Extension



Disadvantages
of small

measurement
volume of
equipment
measuring
permittivity

Evett et al. (2009)

Penn State Extension

EnviroSCAN Probe Design
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Need for field calibration

Factory calibration performed in

e Repacked, uniform soil,

e Uniform water content and temperature,
e No macropores

e Small clay content

e Low bulk electrical conductivity

Factory calibration represent the best that can be expected
from a given sensor

Penn State Extension
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Calibration

NMM has linear regression between count
ratio and volumetric moisture content, so only
dry and wet end calibration is needed

Select representative site, install 6 tubes — 3 in
dry area, 3 in wet area (may need to build
dikes and saturate entire root zone) — let drain
to field capacity

TDR, capacitance, etc don’t have a linear
correlation so intermediate water content is
needed.

Penn State Extension




Tensiometers

Measures matric + gravitational potential in soil
Degassed (boiled 10 min) water in tube — moves
out ceramic cup when soil dries, water moves in
when soil wets up — suction is shown on gauge

Penn State Extension

Info from Heng and Evett, 2008




Tensiometers

W.=W_+ lUp +W + W,
where

W_ = Total soil water potential
W = Matric potential

W, = Pressure potential

W_ = Osmotic potential

W_= Gravitational potential

Tensiometers do not measure W - so overestimate PAW
in saline or sodic soils

Small range 0 to -75 kPa (-0.75 bar) - 90% of PAW range of
coarse, but only 30% of PAW range of silt loam - clay soils
Only work to -1.2 m depth

Need time to equilibrate in heavy soils

Not suited for cracking or very coarse soils

Regular maintenance needed

Penn State Extension



Electrical Resistance Sensors

Measures how well current is conducted — measure
of soil water tension

Pair of electrodes embedded in porous body made
of gypsum or saturated with gypsum

Each block must be calibrated — use pressure plate
chamber

Gypsum block: Range -150 to -600 kPa (1.5-6 bar)
Granular matrix sensor: Range -10 to -150 kPa
Gypsum dissolves — changes calibration q@
GMS lasts longer £e85Y
Gypsum block adapted to finer textured soils, and {2405
GMS to coarser soils.

Easily automated e
Subject to hysterisis — not suited to measure water '
content

Penn State Extension



Conclusions

Many methods to measure components of the water
balance have been developed

Selecting the appropriate method depends on objectives,
resources available, and accuracy desired

Salesmen are overstating the capabilities of equipment

Much effort and energy can be wasted by not properly
selecting and calibrating measurement equipment

Penn State Extension
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