

2445-06

Advanced Workshop on Nanomechanics

9 - 13 September 2013

Probing macroscopic realism via Ramsey correlation measurements

Peter Rabl Atominstitut TU Wien

Probing macroscopic realism via Ramsey correlation measurements

Peter Rabl

Collaborations:

A. Asadian, C. Brukner (Vienna)

S. Bennett, M. Lukin (Harvard)

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Der Wissenschaftsfonds.

"Quantum" mechanical resonators ...

"Quantum" mechanical resonators ...

[1] M. Arndt (Vienna) Wednesday, September 11, 13

"Macroscopic" quantum superpositions ...

- QM is essentially unexplored for massive objects !
- Alternative theories and (gravity induced) collapse models predict corrections to QM !

Quantum physics with macroscopic objects ?

Macroscopic quantum interference ...

Quantum mechanics vs. "realism" ...

Correlation between spatially separate measurements:

$$|E(a,b) - E(a,b') + E(a',b) + E(a'b')| \le 2$$

$$\leq 2\sqrt{2}$$

local realism (hidden variable theories) quantum mechanics

J. S. Bell, Physics **1**, 195 (1964); J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL **23**, 880 (1969)

Quantum mechanics vs. "realism" ...

temporal correlations:

A. Leggett

$$\Rightarrow$$
 Leggett-Garg inequality:

$$C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1 \le 1.5$$

"macro-realistic" quantum mechanics

A. J. Leggett and A. Garg, PRL 54, 857 (1985).

Probing "realism" with massive objects ... \overleftarrow{C} \overleftarrow{C}

- Direct test of the most fundamental aspects of quantum physics in the macroscopic domain.
- Unambiguous experimental signatures to distinguish the predictions of quantum mechanics from those of classical physics or more general (hidden variable) theories.

Probing "realism" with massive objects ...

Goal:

 $C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$

Problems:

- Experimental difficulty of preparing quantum superpositions of large objects.
- Fundamental test of quantum mechanics are often formulated for discrete systems. Extensions to continuous variable systems not straightforward.

This talk ...

Ramsey correlation measurements:

- Conceptually simple & experimentally realistic scheme !
- Versatile measurement tool for various fundamental test of quantum mechanics with massive objects !

Wednesday, September 11, 13

Magnetometry / Ramsey measurements ...

time

 $H(t) = \Delta_B(t) |e\rangle \langle e|$

$$\Phi(\tau) = \int_0^\tau dt' \,\Delta_B(t')$$

i)
$$|g\rangle \rightarrow \frac{1}{\sqrt{2}} \left(|g\rangle + e^{i\varphi} |e\rangle \right)$$

ii)
$$\rightarrow \frac{1}{\sqrt{2}} \left(|g\rangle + e^{i\varphi} e^{-i\Phi(\tau)} |e\rangle \right)$$

Magnetometry / Ramsey measurements ...

Magnetometry / Ramsey measurements ... i) ii) iii) iv) $|e\rangle: Z = +1$ $|g\rangle: Z = -1$ π τ π Z $\overline{2}$ 2 $|g\rangle$ time $p_{\pm} = \frac{1}{2} \left(1 \pm \cos(\varphi - \Phi(\tau)) \right)$ Measurement: iv) Example: $\frac{g_s \mu_B \tau}{\hbar} \times \delta B$ $\Phi(\tau) = \frac{g_s \mu_B \tau}{\hbar} \times \delta B$ (constant

 δB

Wednesday, September 11, 13

magnetic field)

"Quantum Magnetometry" ...

Idea:

Conditioned on the outcome of the first measurement the resonator is projected into one of the superposition states

$$|\psi^{\pm}\rangle = \frac{|0\rangle \pm e^{i\bar{\varphi}}|\alpha(\tau)\rangle}{2\sqrt{p_{\pm}}}$$

Use correlation between the first and second measurement to probe quantum superpositions over a time Δt .

$$|\psi^{\pm|+}\rangle = \frac{|0\rangle + e^{i\bar{\varphi}_1} |\alpha_1 e^{-i\theta}\rangle \pm e^{i\bar{\varphi}_2} |\alpha_2\rangle \pm e^{i(\bar{\varphi}_1 + \bar{\varphi}_1 + \gamma)} |\alpha_1 e^{-i\theta} + \alpha_2\rangle}{4\sqrt{p_+}}$$
$$\gamma = \operatorname{Im}\{\alpha_2 \alpha_1^* e^{i\theta}\}$$

 \Rightarrow Conditioned probabilities: $p_{\pm|+}, p_{\pm|-} \Rightarrow \langle Z(t_2)Z(t_1) \rangle$

⇒ The correlation function $C(t_1, t_2) = \langle Z(t_2)Z(t_1) \rangle$ provides direct measure for the survival/decay of macroscopic superposition states !

 \Rightarrow During the waiting time the resonator is **decoupled** from the qubit !

Levitated objects ...

optically levitated nanodiamonds + NV centers !

(Z. Yin et al, arXiv:1305.1701)

magnetic levitation + *superconducting flux qubits*

(O. Romero-Isart et al. PRL 2012; M. Cirio et al. PRL 2012)

- ⇒ The correlation function $C(t_1, t_2) = \langle Z(t_2)Z(t_1) \rangle$ provides direct measure for the survival/decay of macroscopic superposition states !
- \Rightarrow During the waiting time the resonator is **decoupled** from the qubit !

$$C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$$

"Macrorealism" [1]:

(1) Macrorealism per se: A measurement on a macroscopic system reveals a well-defined pre-existing value.

(2) Non-invasive measurability: At least in principle, we can measure this value without disturbing the system.

[1] Leggett, J. Phys. Condens. Matter **14**, R415 (2002); Emary, Lambert, Nori, arXiv:1304.5133

Example:

Thermal resonator state, identical measurements $(\alpha = \alpha_1 = \alpha_2)$

$$C(t_i, t_j) = \frac{1}{2} \Big[\cos(\bar{\varphi}_i + \bar{\varphi}_j + \gamma_{ij}) e^{-|\alpha|^2 (2\bar{n}+1)(1+\cos\theta_{ij})} \\ + \cos(\bar{\varphi}_i - \bar{\varphi}_j - \gamma_{ij}) e^{-|\alpha|^2 (2\bar{n}+1)(1-\cos\theta_{ij})} \Big]$$

$$\gamma_{ij} = |\alpha|^2 \sin(\theta_{ij}) \longrightarrow \theta_{ij} = \omega(t_j - t_i)$$

Leggett-Garg inequalities ...

Leggett-Garg inequality (LGI):

$$W = C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$$

Leggett-Garg inequalities ...

Leggett-Garg inequality (LGI):

$$W = C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$$

Quantum vs. classical correlations ... $x_c(t)$ $Z(t_i)$ t_i $Z(t_j)$ t_j

Qubit probing a classical field:

$$H_{\rm int} = \sqrt{2\lambda} x_c(t) |e\rangle \langle e|$$

(random) trajectory, but with a specific value at each time

Quantum vs. classical correlations ...

For a given trajectory:

 $\langle Z(t_i) \rangle = \cos(\varphi_i - \Phi_i) \qquad \langle Z(t_j) \rangle = \cos(\varphi_j - \Phi_j)$ $\langle Z(t_j) Z(t_i) \rangle = \cos(\varphi_i - \Phi_i) \cos(\varphi_j - \Phi_j)$

Quantum vs. classical correlations ...

$$\langle Z(t_i)Z(t_j)\rangle = \int d\Phi_i d\Phi_j P(\Phi_i, \Phi_j) \cos(\varphi_i + \Phi_i) \cos(\varphi_j + \Phi_j)$$
proper probability distribution
(derived from the classical
process $x_c(t)$)
$$LG inequality
applies !$$

Quantum vs. classical correlations ...

Example: thermal classical field

Classical:

$$C(t_1, t_2) = \frac{1}{2} \left[\cos(\varphi_1 + \varphi_2) e^{-2|\alpha(\tau)|^2 \langle x_c^2 \rangle (1 + \cos \theta)} + \cos(\varphi_1 - \varphi_2) e^{-2|\alpha(\tau)|^2 \langle x_c^2 \rangle (1 - \cos \theta)} \right]$$

Quantum:

$$C(t_1, t_2) = \frac{1}{2} \left[\cos(\bar{\varphi}_1 + \bar{\varphi}_2 + \gamma) e^{-|\alpha(\tau)|^2 (2\bar{n}+1)(1+\cos\theta)} + \cos(\bar{\varphi}_1 - \bar{\varphi}_2 - \gamma) e^{-|\alpha(\tau)|^2 (2\bar{n}+1)(1-\cos\theta)} \right]$$

Violation of LG inequality: requirements

1) Dispersive qubit-resonator coupling:

$$H = \omega a^{\dagger} a + \lambda (a + a^{\dagger}) |e\rangle \langle e|$$

2) Qubit control & readout:

⇒ see literature on NV centers, superconducting qubits, ...

3) Low mechanical occupation numbers $\bar{n} \sim \mathcal{O}(1)$:

4) State dependent displacement $|\alpha(\tau)| \sim \mathcal{O}(1)$:

Displacement amplitude ...

Parametrically enhanced displacements ...

Parametrically enhanced displacements ...

How many pulses can I do? \Rightarrow decoherence !

$$|\alpha_{\max}| \lesssim \frac{\lambda}{\pi} \times \min\{T_2, T_{\operatorname{th}}\}$$
 $T_{\operatorname{th}}^{-1} = \frac{k_B T}{\hbar Q}$

-) theory: Armour et al, PRL (2002), Tian, PRB (2005); P.R. (2003), ...) see recent experiments with superconducting qubits & NV center

Leggett-Garg inequality: Summary

$$LG = C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$$

Clear experimental signature to distinguish between quantum and classical signals!

Modular variables ...

 $\langle Z(t_1) \rangle = \operatorname{Tr} \{ Q(\bar{\varphi}_1, \alpha_1) \rho_0 \}$

Ramsey measurement allows us to measure "**modular variables**" [1] of a macroscopic continuous variable system:

$$Q(\varphi, \alpha) = \cos\left(\varphi + \sqrt{2} \operatorname{Im}(\alpha) x - \sqrt{2} \operatorname{Re}(\alpha) p\right) \qquad \begin{array}{c} \text{bound} \\ \text{observables} \end{array}$$

infinite dimensional Hilbertspace

[1] Aharonov, Rohrlich, "Quantum Paradoxes"; S. Popescu, Nature Phys (2010)

Modular variables ...

$$\Psi_{\alpha}(x) = \frac{1}{\sqrt{2}} \left(\Psi_1(x) + e^{i\alpha} \Psi_2(x) \right)$$

non-local phase

macroscopic

superposition

$$\langle x^n \rangle = \frac{1}{2} \int dx \, x^n |\Psi_1(x)|^2 + \frac{1}{2} \int dx \, x^n |\Psi_2(x)|^2$$

$$\langle \cos(p) \rangle = \dots + e^{i\alpha} \cdots + e^{-i\alpha} \dots$$

[1] Aharonov, Rohrlich, "Quantum Paradoxes"; S. Popescu, Nature Phys (2010)

Quantum contextuality ...

X_{jk}	k = 1	k = 2	k = 3
j = 1	x_1	p_2	$-x_1 - p_2$
j=2	$-x_2$	p_1	$x_2 - p_1$
j = 3	$x_2 - x_1$	$-p_1 - p_2$	$x_1 - x_2 + p_1 + p_2$

two resonator modes

$$A_{jk} = e^{i\sqrt{\pi}X_{jk}} = \cos\left(\sqrt{\pi}X_{jk}\right) + i\sin\left(\sqrt{\pi}X_{jk}\right)$$

Non-contextual theories: The pre-existing value of an observable does not depend in which combination of other compatible observables it is measured. \Rightarrow

A. Plastino and A. Cabello, PRA 82, 022114 (2010)

Quantum contextuality ...

X_{jk}	k = 1	k = 2	k = 3
j = 1	x_1	p_2	$-x_1 - p_2$
j=2	$-x_2$	p_1	$x_2 - p_1$
j = 3	$x_2 - x_1$	$-p_1 - p_2$	$x_1 - x_2 + p_1 + p_2$

two resonator modes

$$A_{jk} = e^{i\sqrt{\pi}X_{jk}} = \cos\left(\sqrt{\pi}X_{jk}\right) + i\sin\left(\sqrt{\pi}X_{jk}\right)$$

Non-contextual theories: The pre-existing value of an observable does not depend in which combination of other compatible observables it is measured. \Rightarrow

$$|\langle R_1 \rangle + \langle R_2 \rangle + \langle R_3 \rangle + \langle C_1 \rangle + \langle C_2 \rangle - \langle C_3 \rangle| \le 3\sqrt{3}$$

•We can test such inequalities by looking at three-point correlations $\frac{Z(t_1)Z(t_2)Z(t_2)}{Z(t_2)}$

 $\langle Z(t_1)Z(t_2)Z(t_3)\rangle = \text{Tr}\{Q_{t_3}Q_{t_2}Q_{t_1}\rho_0\}$

A. Plastino and A. Cabello, PRA 82, 022114 (2010)

Conclusions & Outlook

Summary ...

- Versatile & experimentally feasible measurement tool for fundamental test of quantum mechanics with massive objects !
- Implementation with various spin, charge & photonic qubits, levitated objects, ...

A. Asadian, C. Brukner, PR, arXiv:1309.2229

Outlook: beyond Leggett-Garg ...

Leggett: "Macro-realism"

= Macrorealism per se & non-invasive measurability

1) Evaluation of potential classical "invasive" effects. Exclude such effects by complementary measurements !

2) Generalization to Bell-type measurements between space-like separated resonators !

Announcement ...

Reviews, Letters & Articles:

Submit your great research to <u>www.ann-phys.org</u> by May 2, 2014

Thank you !

Probing macroscopic realism via Ramsey correlation measurements

• A two level system is used to probe quantum superpositions of macroscopic resonators via multiple Ramsey measurements:

• Theory predicts that correlations between subsequent measurement outcomes violate the Leggett-Garg inequality:

$$C(t_1, t_2) + C(t_2, t_3) - C(t_1, t_3) \le 1$$

and can be used for other fundamental tests of quantum mechanics !

 $\Rightarrow C(t_1, t_2) = \langle Z(t_2) Z(t_1) \rangle$

A. Asadian, C. Brukner, P. Rabl (poster & talk)