

2449-15

38th Conference of the Middle European Cooperation in Statistical Physics -MECO38

25 - 27 March 2013

Relaxation, Pre-thermalization and Diffusion in a Noisy Quantum Ising Chain

Jamir MARINO SISSA, International School for Advanced Studies Trieste Italy

Relaxation, pre-thermalization and diffusion in a noisy Quantum Ising Chain

Jamir Marino - Alessandro Silva Phys. Rev. B 86, 060408 (Rapid Comm.)

MECO38

March 25° 2013, ICTP Trieste

Relaxation Dynamics

Thermal state? Srednicki (1994), Kollath et al. (2007), Rigol et al. (2008), ...

Prethermalization

The Quantum Ising Chain

$$H_{0} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + g \sigma_{i}^{z}$$
Feromagnetic phase Paramagnetic phase $g = 1$

$$\Delta = |g-1|$$

Jordan Wigner Transformation:

 $c_{j}^{+} = \left(\prod_{m=1}^{j-1} \sigma_{m}^{z}\right) \sigma_{j}^{+} \quad c_{j}^{-} = \left(\prod_{m=1}^{j-1} \sigma_{m}^{z}\right) \sigma_{j}^{-}$

Fourier transformation and Bogolyubov Rotation:

$$H = \sum_{k} E_{k} \gamma_{k}^{+} \gamma_{k}$$

 $E_k = \sqrt{(g - \cos k)^2 + \sin^2 k}$

Free fermions

Quench of the Quantum Ising Chain

...

Quantum Quench of the Transverse Field

Rossini et al. (2010) Calabrese et al. (2011) Foini et al. (2011) Fagotti et al. (2013)

$$\rho_{GGE} = \frac{1}{Z} \exp\left(\int_{-\pi}^{\pi} \frac{dk}{2\pi} \lambda_k \gamma_k^+ \gamma_k\right)$$

GGE in terms of mode occupation numbers

$$n_k = \gamma_k^+ \gamma_k$$
 Fermion occupation number

The model and the out of equilibrium protocol

J. Marino, A. Silva - Phys. Rev. B 86, 060408

$$H = H_0 + V$$

$$H_0 = -J\sum_i \sigma_i^x \sigma_{i+1}^x + g\sigma_i^z \qquad \Delta = |g-1|$$

$$V = \sum_{i} \delta g(t) \sigma_{i}^{z}$$
 $\langle \delta g(t) \delta g(t') \rangle = \frac{\Gamma}{2} \delta(t - t')$

We perform a quantum quench from the paramagnetic phase at g_0 to the paramagnetic phase at g and we compute observables of physical interest during the dynamics

Out of Equilibrium Protocol

Relaxation, pre-thermalization and diffusion in a noisy Quantum Ising Chain

U

Dynamics of Thermalization

J. Marino, A. Silva - Phys. Rev. B 86, 060408

• Prethermalization

drfits towards GGE (Kollar et al. 2010)

- **Dephasing** $t \approx \frac{1}{\Gamma}$: coherences killed
- Thermalization population heating towards

Fig.1

Fig.2

 $T \to \infty$

The density of kinks vs. time

The spreading of quantum and thermal correlations

Order parameter correlations

$$\left\langle m_x(r,t)m_x(0,t)
ight
angle = r^{-1/2}e^{-rac{t'}{\xi(t)}}, \quad rac{1}{\xi(t)} = rac{1}{\xi} + rac{\Gamma t}{2(1+\Delta)^2}$$
 No Quench

Different signatures in different observables.

A bit of details ...

Populations

$$\left\langle \gamma_{k}^{+}(t)\gamma_{k}(t)\right\rangle = \frac{1}{2} + \left(\sin^{2}(\Delta\alpha_{k}) - \frac{1}{2}\right)e^{-\Gamma\sin^{2}\theta t} \quad \text{Populations}$$

$$\theta(g) = \frac{1}{2}\arctan\left(\frac{\sin k}{g - \cos k}\right) \quad \Delta\alpha_{k} = \theta(g_{1}) - \theta(g_{0})$$
The relaxation rates tend to vanish close to the band edge for: $k = 0, \pm \pi$ $\Gamma t >> 1$

$$\Gamma_{k} \approx_{(k \approx 0)} \Gamma \frac{k^{2}}{\Delta^{2}}$$
Most of the modes relax on time scales of the order of $1/\Gamma$

Coherences

 $\left\langle \gamma_{k}^{+}(t)\gamma_{-k}^{+}(t)
ight
angle$

Coherences decay exponentially fast as $e^{-\Gamma t}$, and they are subleading compared to populations for $\Gamma t >> 1$.

Number of kinks

$$E(t) \sim \int dk E_k \left\langle \gamma_k^+ \gamma_k \right\rangle \sim \frac{1}{\sqrt{\Gamma t}}$$

Conclusions

- We study the dynamics of thermalization resulting from a timedependent noise in a Quantum Ising Chain subject to a sudden quench of *g*.
- For weak noises the dynamics shows a pre-thermalized state at intermediate time scales, eventually drifting towards an asymptotic inifinite temperature state, charatezied by a diffusive behaviour in the transverse magnetization correlations.

Appendix

Appendix B

Appendix C

Transverse Magnetization Correlator

$$\langle m(r,t)m(0,t)\rangle = \langle m(r,t)m(0,t)\rangle_{pop.} + \\ + \langle m(r,t)m(0,t)\rangle_{coh.} + \langle m(r,t)m(0,t)\rangle_{mix.} \\ e^{-\Gamma t} \qquad \Gamma t >> 1 \qquad e^{-\Gamma t} \\ \int_{-\infty}^{+\infty} dk \ e^{ikr} \ e^{-\frac{\Gamma k^2 t}{\Delta^2}}$$

$$\langle m(r,t)m(0,t)\rangle_{c} = 4 \int_{-\infty}^{\infty} \frac{dk}{2\pi} \int_{-\infty}^{\infty} \frac{dk'}{2\pi} e^{i(k-k')r} \\ \left(\frac{1}{4} + \frac{k}{E_{k}} \delta f_{k}(t) \frac{k'}{E_{k}'} \delta f_{k'}(t) - \frac{m^{2}}{E_{k}E_{k'}} \delta f_{k}(t) \delta f_{k'}(t)\right) \qquad \delta f_{k}(t) = \frac{1}{2} \left(\frac{k^{2}}{2\Delta_{1}^{2}} \rho_{-}^{2} - 1\right) e^{\frac{-\Gamma k^{2}t}{\Delta_{1}^{2}}}$$

Order Parameter Correlator

$$\rho_{lm}^x = \langle 0 | B_l A_{l+1} B_{l+1} \dots A_{m-1} B_{m-1} A_m | 0 \rangle$$

$$A_i = c_i^{\dagger} + c_i \quad B_i = c_i^{\dagger} - c_i$$

$$D_n[f] = det(T_n) = det|s(j-k)|_{j,k=0}^n$$

$$T_n = \begin{pmatrix} s(0) & s(-1) & s(-2) & \dots & s(-n) \\ s(1) & s(0) & s(-1) & \dots & s(1-n) \\ s(2) & s(1) & s(0) & \dots & s(2-n) \\ \dots & \dots & \dots & \dots & \dots \\ s(n) & s(n-1) & s(n-2) & \dots & s(0) \end{pmatrix}$$

$$\left\langle B_{i}A_{j}\right\rangle = s(n) = \frac{dk}{2\pi} \int_{-\infty}^{+\infty} \frac{dk}{2\pi} e^{-ik(i-j)} e^{i2\theta_{k}} \delta f_{k} \qquad \qquad \delta f_{k} = -\frac{1}{2} e^{-\Gamma t \sin^{2} 2\theta(g)}$$
$$i - j = n$$

For large *n* we apply Fisher-Hartwig conjecture.

