



2449-10

38th Conference of the Middle European Cooperation in Statistical Physics -MECO38

25 - 27 March 2013

Fractal Signatures in Multi-Scale Domain Morphologies

Varsha BANERJEE

Department of Physics IIT Delhi India

# Fractal Signatures in Multi-Scale Domain Morphologies

Varsha Banerjee

Department of Physics IIT Delhi

March 26, 2013



# Outline

- I. Signatures of Fractal Morphologies.
- II. Random Field Ising Model and Dilute Antiferromagnets.
- III. Double Phase-Separating Mixtures.
- IV. Viscoelastic Phase-Separating Mixtures.

Collaborators - Gaurav Shrivastav, Siddharth Krishnamoorthy and Sanjay Puri (JNU)



### I. Fractals abound in Nature

They are observed in growth profiles, colloidal aggregates, bacterial and insect colonies, dielectric breakdowns, etc.

example: aggregation of Pt atoms on a Pt(111) surface (hexagonal lattice)



**Fig. 13:** *Pt island formation at temperatures* T = 300K *(left) and* T = 400K *(right) c/o T. Michely, Univ. Aachen/Germany* At low temperatures, islands resemble DLA-clusters, at higher *T* diffusion along edges smoothens the shape



**Fig. 14:** Various growth or branching processes, from left to right: electrochemical deposition, mineralization pattern, \* Triacontane on  $SiO_x$ , bacteria, termite colonies

source: http://users.unim.it/bimetis/demo/dla/dla.html and (\*) www.mpikg-golm.mpg.de/gf/people/riegler

Domains & interfaces are characterized by non-integer fractal dimensions.



# Tools for morphology characterization

The standard probe is the correlation function:

$$C(\mathbf{r}) = \langle \psi(\vec{r_i}) \psi(\vec{r_j}) \rangle - \langle \psi(\vec{r_i}) \rangle \langle \psi(\vec{r_j}) \rangle,$$

where  $\psi(\vec{r_i})$  is an appropriate variable and  $r = |\vec{r_i} - \vec{r_j}|$ . The angular brackets denote an ensemble average.

• Correlation length  $\xi$ :

Distance over which C(r) decays to (say)  $0.2 \times$  maximum value.



### Textures of domains and interfaces

$$C(r) \simeq \left\{ egin{array}{ll} Ar^{lpha}, & w \ll r \ll \xi, \ Br^{eta}, & a \ll r \ll w, \ Gr^{\gamma}, & r \ll a. \end{array} 
ight.$$

- ► For smooth domain, α = 1, signifying a Porod decay. For fractal domain, α = d<sub>m</sub> - d.
- For fractal interface,  $\beta = d d_s$ .
- For particles of diameter *a*,  $\gamma = 1$  yielding a Porod decay.

(Sorensen, Aerosol Science and Technology, 2001)



## Structure factor

Small-angle scattering experiments yield the structure factor:

$$S(\vec{k}) = \int d\vec{r} e^{i\vec{k}\cdot\vec{r}}C(r),$$

where  $\vec{k}$  is the wave-vector of the scattered beam.

$$S(k) \simeq \left\{ egin{array}{ll} ilde{A}k^{-(d+lpha)}, & \xi^{-1} \ll k \ll w^{-1}, \ ilde{B}k^{-(d+eta)}, & w^{-1} \ll k \ll a^{-1}, \ ilde{G}k^{-(d+\gamma)}, & a^{-1} \ll k. \end{array} 
ight.$$

• The Porod decay  $k^{-(d+1)}$  indicates smooth domains or interfaces.  $k^{-(d\pm\theta)}$  indicates a fractal structure in the domains or interfaces.



### II. Random Field Ising Model

Energy function

$$E = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j - \sum_{i=1}^N h_i \sigma_i, \quad \sigma_i = \pm 1.$$

- The interaction J > 0 prefers a magnetized structure.
- The (disordering) random fields  $\{h_i\}$  are drawn from:

$$p(h_i) = \frac{1}{\sqrt{2\pi}\Delta} e^{(-h_i^2/2\Delta^2)}.$$

- Archetypal example of a system with disorder and frustration.
- Approach to the GS is difficult due to the complex energy landscape.
- Exact ground states of the RFIM can be obtained by graph-cut (max-flow/min-cut) algorithms.



(Angles d'Auriac, Preissmann, Rammal, J. Phys. (France) Lett. 1985)

### GS of the RFIM

- By computing the Binder cumulant,  $\Delta_c(T=0) \simeq 2.278 \pm 0.002$ .
- Emergence of domains of size  $\xi$  as  $\Delta$  reduced from  $\Delta = \infty$ .
- $\xi \to \infty$  as  $\Delta \to \Delta_c^+$ .





T = 0; L = 256 with pbc; 100 sets of  $\{h_i\}$  for each  $\Delta$ .

(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)

# Scaling of $C(r, \Delta)$

•  $C(r, \Delta)$  vs.  $r/\xi$ ,  $\Delta > \Delta_c$ :



- System characterized by a single length scale  $\xi$ .
- Morphologies are scale invariant with respect to change in  $\Delta$ .



(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)

# $C(r, \Delta)$ at small-r

- Exhibits a cusp-singularity:  $C(r, \Delta) \simeq 1 - A(r/\xi)^{\beta}, r \ll w$ with  $\beta \simeq 0.5$
- The cusp-exponent β quantifies interfacial roughness.
- Interfaces are self-affine fractals:  $d_s = d - \beta$ .

(Wong & Bray, PRL, PRB, 1988; Barma, EPJB, 2008)



(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)

• In the paramagnetic phase,  $d_s \simeq 2.5$ .

A similar cusp has also been reported in the context of *fluctuation dominated phase separation*. (Das & Barma, PRL, 2000; Mishra & Ramaswamy, PRL, 2006)



# Larger-r behavior of $C(r, \Delta)$

$$C(r,\Delta)\simeq B(r/\xi), \quad w\ll r\ll \xi.$$

The linear decay is the Porod law characteristic of scattering from sharp interfaces in inhomogeneous systems. (Oono & Puri, Mod.Phy.Lett., 1988)

- "a" is the lattice spacing.
- ▶ No systematic structure for  $r \sim a$ .
- Cusp singularity for  $a \ll r \ll w$ ;
- Porod decay for  $w \ll r \ll \xi$ .



# Implications for $S(k, \Delta)$

Asymptotic power law decay for  $k \ll a^{-1}$ :

$$S(k,\Delta) \sim \tilde{A}(\xi k)^{-(d+\beta)} + \tilde{B}(\xi k)^{-(d+1)}$$

(Bale & Schmidt, PRL, 1984; Wong & Bray, PRL, 1988)

- Porod regime at intermediate values of k:  $S(k, \Delta) \sim k^{-(d+1)}$ .
- Asymptotic cusp regime:  $S(k, \Delta) \sim k^{-(d+\beta)}, \ \beta \simeq 0.5.$
- Cross-over momentum  $k_c(\Delta) \sim \xi^{-1}$



(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)

Crossover due to interfacial roughening caused by quenched disorder.



### Experimental verification

Diluted Antiferromagnets (DAFs) in a uniform field are realizations of the RFIM. (Fishman & Aharony, J. Phys. C, 1978)



Scattering data from DAFs by Belanger, et al., PRB, 1985.

► All three data exhibit an asymptotic cusp regime  $[S(k) \sim k^{-3.5}]$ . (Shrivastav, VB, Puri)



## III. Double phase-separating symmetric binary mixture



- **Droplet-in-droplet morphology** of an ordering mixture of poly-vinyl-methyl-ether and water in d = 2. (Tanaka, PRL, 1994).
- Corresponding S(k) vs. k exhibiting a cross-over from a Porod regime  $[S(k) \sim k^{-3}]$  to a mass fractal regime  $[S(k) \sim k^{-1.76}]$ . (Shrivastav, VB, Puri)



## Droplet-in-droplet morphology in DPS



- Microstructure of an ordering mixture of  $\epsilon$ -caprolactone and styrene oligomers in d = 2. (Tanaka, PRL, 1994).
- Corresponding S(k) vs. k exhibits a cross-over from a Porod regime  $[S(k) \sim k^{-3}]$  to a mass fractal regime  $[S(k) \sim k^{-1.51}]$ . (Shrivastav, VB, Puri)



# IV. Viscoelastic phase separation in asymmetric mixtures



- ► VPS in a polystyrene and aqueous NaCl suspension for t = 270 s, 900 s and 3600 s. (Tanaka, J Phys. Condens. Matter, 2005; PRL, 2005; 2011).
- Smooth domains of smaller and faster (liquid) particles separated by thick (mass) fractal strings of larger and slower (colloidal) particles. (Shrivastav, VB, Puri)



# Summary

- ► The signature of fractal domains and interfaces is a power-law decay with non-integer exponents in C (r) and S (k).
- The power yields the fractal dimension of the underlying geometry, and the law holds over length scales which can probe this geometry.
- Smooth morphologies are characterized by the Porod law.
- Our re-analysis of scattering data from (i) dilute antiferromagnets, (ii) double phase-separating binary mixtures and (iii) viscoelastic phase-separating asymmetric binary mixtures reveals morphologies that are smooth on some length scales and fractal on others.
- ► The behaviors of C (r) vs. r and S (k) vs. k are therefore characterized by cross-overs from one form to another.
- The cross-over points are easy to calculate and are related to the natural length scales of the multi-scale morphologies.



### GS by Standard Procedures

- Metropolis Algorithm, Simulated Annealing, Cluster Algorithm, etc.
- Involve only one or O(1) spin-flip at a time.
- Convergence time to the global minimum is non-polynomial in N.
- System then opts for a local minimum which could be arbitrarily far from the global minimum.
- The local minimum may not convey any of the global properties encoded in the energy.
- ► Further, possibility of escape to the global minimum is small.



### "Max-Flow/Min-Cut" or "Graph Cut" Methods

A specialized graph for the energy function is constructed such that the cheapest cut on the graph minimizes energy either globally or locally.

- A graph G = (V, E) consisting of vertices V and edges E that connect then.
- An edge *ij* joining vertices *i* and *j* is assigned a weight  $V_{ij}$ .
- A cut C is a partition of the vertices  $\mathcal{V}$  into two sets  $\mathcal{R}$  and  $\mathcal{Q}$ .
- ▶ Any edge  $ij \in \mathcal{E}$  with  $i \in \mathcal{R}$  and  $j \in \mathcal{Q}$  (or vice-versa) is a cut edge.
- ► The cost of a cut is the sum of weights of the cut edges.
- ► The min-cut problem is to find the cut with the smallest cost.



### The Graph Construction

A standard energy function:

$$E(\{s_i\}) = \sum_{\{ij\}\in\mathcal{N}} V_{ij}(s_i, s_j) + \sum_i D_i(s_i), \quad s_i \in \mathcal{L} = (\alpha, \beta, ...., \gamma).$$

• Two-terminal graph ( $s_i = \alpha, \beta$ ):



(Boykov & Kolmogorov, IEEE PAMI, 2004)

| Edge           | Weight            | For                                 |
|----------------|-------------------|-------------------------------------|
| $t_i^{\beta}$  | $\infty$          | $i\in \mathcal{R}_{lpha}$           |
| $t_i^{\beta}$  | $D_i(s_i)$        | $i\notin \mathcal{R}_\alpha$        |
| $t_i^{\alpha}$ | $D_i(\alpha)$     | $i\in \mathcal{R}_{lpha}$           |
| e{i,a}         | $V(s_{i,\alpha})$ |                                     |
| e{a,j}         | $V(lpha, s_j)$    | $\{i,j\}\in\mathcal{N}, s_i eq s_j$ |
| $t_a^{\beta}$  | $V(s_i,s_j)$      |                                     |



#### The Global Minimum

- Exact min-cut can be found in polynomial time if
  - 1. *E* is quadratic,
  - 2.  $s_i$ 's are binary (0 or 1 say),
  - 3. interactions satisfy the regularity condition:

$$V_{ij}(0,0)+V_{ij}(1,1)\leq V_{ij}(1,0)+V_{ij}(0,1).$$

(Picard, Ratliff, Networks, 1975; Papadimitriou, Steiglitz, Combinatorial Optimization, 1982)

- ►  $n_i = (1 + \sigma_i)/2$  transforms  $\sigma_i = \pm 1$  to  $n_i = 0, 1$ .
- ▶ In physical systems, 3 corresponds to interactions  $J_{ij} > 0$ .
- Exact ground states of the RFIM are assured by min-cut algorithms. (d'Auriac, Preissmann, Rammal, J. Phys. (France) Lett. 1985)



# Boykov-Kolmogorov Method (BKM)

- 1. Start with an arbitrary labeling s.
- 2. Set success := 0
- 3. For each label  $s_i \in \{0, 1\}$ :
  - 3.1 Find  $\hat{s} = \arg \min E(s') \operatorname{among} s'$  via graph cuts 3.2 If  $E(\hat{s}) < E(s)$ , set  $s := \hat{s}$  and success := 1

4. If sucess 
$$= 1$$
 go to 2

5. Return s

The convergence time to the global minimum is O(N).

(Boykov & Kolmogorov, IEEE Transactions on PAMI, 2004)



#### **Details of Numerics**

- Boykov-Kolmogorov Method (BKM). (Воукоv & Коlmogorov , IEEE РАМІ, 2004)
- The convergence time to the global minimum is O(N).
- T = 0;  $L^3$  ( $L \le 256$ ) with pbc; 100 sets of  $\{h_i\}$  for each  $\Delta$ .
- Initial configuration a random mix of  $\sigma_i = \pm 1$ .
- ► The BKM yields a 99% overlap with the GS in the first iteration!
- (A mild "critical slowing down" observed as  $\Delta \rightarrow \Delta_c$ .)
- Energy per spin in the GS  $\simeq$  -3.05 (BKM)  $\simeq$  -2.69 (MC)



### GS of the Ising Model

- $\Delta = 0$ ;  $\xi \to \infty$  as  $T \to T_c^+$ ;  $T_c = 4.5103$ .
- Equilibrium MC snapshot (64<sup>3</sup>) at T = 4.515:



- Morphology is not as compact or well-defined.
- Morphology in the RFIM is well-defined even in the absence of coexisting phases.



#### Correlation Exponent $\nu$

Plot of  $\xi(\delta, L)$  vs.  $\delta$ , where  $\delta = (\Delta - \Delta_c)/\Delta_c$ :



•  $\xi \sim \delta^{-\nu}$  when  $\delta \to 0^+$  (limited by *L*).

• Finite-size scaling ansatz:  $\xi(\delta, L) = \delta^{-\nu} f(L\delta^{\nu})$ .

$$\blacktriangleright$$
  $\nu = 1.308 \pm 0.005$ 

 $(1.4 \pm 0.2$  Rieger & Young, J. Phys. A, 1993;  $1.37 \pm 0.09$ , Middleton & Fisher, PRB, 2001).

# $C(r, \Delta)$ at small-r

- Scaling function exhibits a *cusp-singularity:*  $C(r, \Delta) \simeq 1 - A(r/\xi)^{\beta} + \cdots$
- The cusp-exponent β quantifies interfacial roughness.
- Interfaces are self-affine fractals:
   d<sub>s</sub> = d − β.

(Wong & Bray, PRL, PRB, 1988; Barma, EPJB, 2008)

- In the ferromagnetic phase ( $\Delta \lesssim \Delta_c$ ),  $\beta_{\text{ferro}} \simeq 0.66$ ;  $d_s \simeq 2.34$ .
- In the paramagnetic phase  $(\Delta > \Delta_c)$ ,  $\beta_{\text{para}} \simeq 0.5$ ;  $d_s \simeq 2.5$ .



### Related comments

- The value  $d_s \simeq 2.34$  in the ferromagnetic phase is consistent with analytical predictions. (Imry & Ma, PRL, 1976; Halpin-Healy, PRA, 1990)
- ► The paramagnetic phase of the d = 3 RFIM was shown to exhibit percolation type of order. (Alava, et al., PRB, 2002; Ji & Robbins, PRB, 1992)
- The spanning cluster in d = 3 percolation has the fractal dimension of  $d_s \simeq 2.5$ . (Stauffer and Aharony, 1992)
- Cusp-singularity has also been reported in fluctuation dominated phase separation:
  - Steady-state distribution of particles on a fluctuating surface. (Das & Barma, PRL, 2000)
  - Density correlation of ordered (active) nematics.
     (Mishra & Ramaswamy, PRL, 2006)

► In both cases, interfaces are fuzzy or ill-defined.

### Fractal dimension

- Regular objects :  $M \sim R^d$ , where d is the Euclidean dimension.
- Surface fractals:  $S \sim R^{d_s}$ , where  $d_s$  is the surface fractal dimension and  $d 1 \le d_s < d$ .

Interfaces generated in fluid flows, burning wavefronts, pinning of flux lines, deposition processes, etc.

• Mass fractals:  $M \sim R^{d_m}$ , where  $d_m$  is the mass fractal dimension and  $1 \leq d_m < d$ .

DLA clusters, bacterial colonies, colloidal aggregates, etc . Mass fractals are often bounded by surface fractals.

Usual quantities of interest are radius of gyration, roughness exponents, fractal dimensions, etc. of domains and interfaces.



### Multi-scale domain morphologies



Diffusion limited aggregation (DLA) cluster created by spherical particles of size a = 10 in units of the lattice spacing. (b) Structure factor, S(k) vs. k, for the DLA cluster in (a). The straight lines denote the mass fractal regime  $[S(k) \sim k^{-d_m}$  with  $d_m = 1.71$ ; the surface fractal regime  $[S(k) \sim k^{-(2d-d_s)}]$  with  $d_s = 1.6$ ; and the Porod regime  $[S(k) \sim k^{-(d+1)}]$ .



(a)