
2449-10

38th Conference of the Middle European Cooperation in Statistical Physics - 
MECO38 

Varsha BANERJEE

25 - 27 March 2013

Department of Physics 
IIT Delhi 

India

 

Fractal Signatures in Multi-Scale Domain Morphologies



Fractal Signatures in Multi-Scale Domain
Morphologies

Varsha Banerjee

Department of Physics
IIT Delhi

March 26, 2013

Varsha Banerjee Fractal Signatures in Multi-Scale Domain Morphologies



Outline

I. Signatures of Fractal Morphologies.

II. Random Field Ising Model and Dilute Antiferromagnets.

III. Double Phase-Separating Mixtures.

IV. Viscoelastic Phase-Separating Mixtures.

Collaborators - Gaurav Shrivastav, Siddharth Krishnamoorthy and
Sanjay Puri (JNU)

Varsha Banerjee Fractal Signatures in Multi-Scale Domain Morphologies



I. Fractals abound in Nature

They are observed in growth profiles, colloidal aggregates, bacterial and
insect colonies, dielectric breakdowns, etc.

Domains & interfaces are characterized by non-integer fractal dimensions.
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Tools for morphology characterization

� The standard probe is the correlation function:

C (r) = 〈ψ (�ri )ψ (�rj)〉 − 〈ψ (�ri )〉〈ψ (�rj)〉,

where ψ (�ri ) is an appropriate variable and r = |−→ri −−→rj |. The
angular brackets denote an ensemble average.

� Correlation length ξ:

Distance over which C (r) decays to (say) 0.2× maximum value.
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Textures of domains and interfaces

C (r) �
⎧⎨
⎩

Arα, w � r � ξ,
Brβ , a � r � w ,
Grγ , r � a.

� For smooth domain, α = 1, signifying a Porod decay.
For fractal domain, α = dm − d .

� For fractal interface, β = d − ds .

� For particles of diameter a, γ = 1 yielding a Porod decay.

(Sorensen, Aerosol Science and Technology, 2001)

Varsha Banerjee Fractal Signatures in Multi-Scale Domain Morphologies



Structure factor

� Small-angle scattering experiments yield the structure factor:

S(�k) =

∫
d�re i

�k·�rC (r),

where �k is the wave-vector of the scattered beam.

S (k) �
⎧⎨
⎩

Ãk−(d+α), ξ−1 � k � w−1,

B̃k−(d+β), w−1 � k � a−1,

G̃k−(d+γ), a−1 � k .

� The Porod decay k−(d+1) indicates smooth domains or interfaces.

k−(d±θ) indicates a fractal structure in the domains or interfaces.
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II. Random Field Ising Model

� Energy function

E = −J
∑
〈ij〉

σiσj −
N∑
i=1

hiσi , σi = ±1.

� The interaction J > 0 prefers a magnetized structure.
� The (disordering) random fields {hi} are drawn from:

p(hi ) =
1√
2πΔ

e(−hi
2/2Δ2).

� Archetypal example of a system with disorder and frustration.

� Approach to the GS is difficult due to the complex energy landscape.

� Exact ground states of the RFIM can be obtained by graph-cut
(max-flow/min-cut) algorithms.

(Angles d’Auriac, Preissmann, Rammal, J. Phys. (France) Lett. 1985)
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GS of the RFIM

� By computing the Binder cumulant, Δc(T = 0) � 2.278± 0.002.

� Emergence of domains of size ξ as Δ reduced from Δ = ∞.

� ξ → ∞ as Δ → Δ+
c .

T = 0; L = 256 with pbc; 100 sets of {hi} for each Δ.
(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)
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Scaling of C (r ,Δ)

� C (r ,Δ) vs. r/ξ, Δ > Δc :
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� System characterized by a single length scale ξ.

� Morphologies are scale invariant with respect to change in Δ.

(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)
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C (r ,Δ) at small-r

� Exhibits a cusp-singularity:

C (r ,Δ) � 1− A (r/ξ)β , r � w

with β � 0.5

� The cusp-exponent β quantifies
interfacial roughness.

� Interfaces are self-affine fractals:
ds = d − β.
(Wong & Bray, PRL, PRB, 1988; Barma, EPJB, 2008)

� In the paramagnetic phase, ds � 2.5.
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(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)

A similar cusp has also been reported in the context of fluctuation
dominated phase separation. (Das & Barma, PRL, 2000; Mishra & Ramaswamy, PRL, 2006)
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Larger-r behavior of C (r ,Δ)

C (r ,Δ) � B (r/ξ) , w � r � ξ.

The linear decay is the Porod law characteristic of scattering from sharp
interfaces in inhomogeneous systems. (Oono & Puri, Mod.Phy.Lett., 1988)

� “a” is the lattice spacing.

� No systematic structure for r ∼ a.

� Cusp singularity for a � r � w ;

� Porod decay for w � r � ξ.
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Implications for S(k ,Δ)

Asymptotic power law decay for k � a−1:

S (k ,Δ) ∼ Ã (ξk)−(d+β) + B̃ (ξk)−(d+1)

(Bale & Schmidt, PRL, 1984; Wong & Bray, PRL, 1988)

� Porod regime at intermediate values
of k : S (k ,Δ) ∼ k−(d+1).

� Asymptotic cusp regime:
S (k ,Δ) ∼ k−(d+β), β � 0.5.

� Cross-over momentum kc(Δ) ∼ ξ−1
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(Shrivastav, Krishnamoorthy, VB, Puri, EPL, 2011)

Crossover due to interfacial roughening caused by quenched disorder.
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Experimental verification

� Diluted Antiferromagnets (DAFs) in a uniform field are realizations
of the RFIM. (Fishman & Aharony, J. Phys. C, 1978)

Scattering data from DAFs by Belanger, et al., PRB, 1985.

� All three data exhibit an asymptotic cusp regime [S (k) ∼ k−3.5].
(Shrivastav, VB, Puri)
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III. Double phase-separating symmetric binary mixture

� Droplet-in-droplet morphology of an ordering mixture of
poly-vinyl-methyl-ether and water in d = 2. (Tanaka, PRL, 1994).

� Corresponding S (k) vs. k exhibiting a cross-over from a Porod
regime [S (k) ∼ k−3] to a mass fractal regime [S (k) ∼ k−1.76] .
(Shrivastav, VB, Puri)
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Droplet-in-droplet morphology in DPS

� Microstructure of an ordering mixture of ε-caprolactone and styrene
oligomers in d = 2. (Tanaka, PRL, 1994).

� Corresponding S (k) vs. k exhibits a cross-over from a Porod
regime [S (k) ∼ k−3] to a mass fractal regime [S (k) ∼ k−1.51] .
(Shrivastav, VB, Puri)

Varsha Banerjee Fractal Signatures in Multi-Scale Domain Morphologies



IV. Viscoelastic phase separation in asymmetric mixtures

� VPS in a polystyrene and aqueous NaCl suspension for t = 270 s,
900 s and 3600 s. (Tanaka, J Phys. Condens. Matter, 2005; PRL, 2005; 2011).

� Smooth domains of smaller and faster (liquid) particles separated by
thick (mass) fractal strings of larger and slower (colloidal) particles.
(Shrivastav, VB, Puri)
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Summary

� The signature of fractal domains and interfaces is a power-law decay
with non-integer exponents in C (r) and S (k).

� The power yields the fractal dimension of the underlying geometry,
and the law holds over length scales which can probe this geometry.

� Smooth morphologies are characterized by the Porod law.

� Our re-analysis of scattering data from (i) dilute antiferromagnets,
(ii) double phase-separating binary mixtures and (iii) viscoelastic
phase-separating asymmetric binary mixtures reveals morphologies
that are smooth on some length scales and fractal on others.

� The behaviors of C (r) vs. r and S (k) vs. k are therefore
characterized by cross-overs from one form to another.

� The cross-over points are easy to calculate and are related to the
natural length scales of the multi-scale morphologies.
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GS by Standard Procedures

� Metropolis Algorithm, Simulated Annealing, Cluster Algorithm, etc.

� Involve only one or O(1) spin-flip at a time.

� Convergence time to the global minimum is non-polynomial in N.

� System then opts for a local minimum which could be arbitrarily far
from the global minimum.

� The local minimum may not convey any of the global properties
encoded in the energy.

� Further, possibility of escape to the global minimum is small.
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“Max-Flow/Min-Cut” or “Graph Cut” Methods

A specialized graph for the energy function is constructed such that the
cheapest cut on the graph minimizes energy either globally or locally.

� A graph G = (V, E) consisting of vertices V and edges E that
connect then.

� An edge ij joining vertices i and j is assigned a weight Vij .

� A cut C is a partition of the vertices V into two sets R and Q.

� Any edge ij ∈ E with i ∈ R and j ∈ Q (or vice-versa) is a cut edge.

� The cost of a cut is the sum of weights of the cut edges.

� The min-cut problem is to find the cut with the smallest cost.
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The Graph Construction

� A standard energy function:

E ({si}) =
∑

{ij}∈N
V ij(si , sj) +

∑
i

D i (si ), si ∈ L = (α, β, ...., γ).

� Two-terminal graph (si = α, β):

(Boykov & Kolmogorov , IEEE PAMI, 2004)

Edge Weight For

t
β
i ∞ i ∈ Rα

t
β
i Di (si ) i /∈ Rα

tαi Di (α) i ∈ Rα

e{i,a} V (si,α)

e{a,j} V (α, sj ) {i, j} ∈ N , si �= sj

tβa V (si , sj )
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The Global Minimum

� Exact min-cut can be found in polynomial time if

1. E is quadratic,
2. si ’s are binary (0 or 1 say),
3. interactions satisfy the regularity condition:

Vij(0, 0) + Vij(1, 1) ≤ Vij(1, 0) + Vij(0, 1).

(Picard, Ratliff, Networks, 1975; Papadimitriou, Steiglitz, Combinatorial Optimization, 1982)

� ni = (1 + σi )/2 transforms σi = ±1 to ni = 0, 1.

� In physical systems, 3 corresponds to interactions Jij > 0.

� Exact ground states of the RFIM are assured by min-cut algorithms.
(d’Auriac, Preissmann, Rammal, J. Phys. (France) Lett. 1985)
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Boykov-Kolmogorov Method (BKM)

1. Start with an arbitrary labeling s.

2. Set success := 0

3. For each label si ∈ {0, 1}:
3.1 Find ŝ = argminE (s ′) among s ′ via graph cuts
3.2 If E (ŝ) < E (s), set s := ŝ and success := 1

4. If sucess = 1 go to 2

5. Return s

The convergence time to the global minimum is O(N).
(Boykov & Kolmogorov , IEEE Transactions on PAMI, 2004)
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Details of Numerics

� Boykov-Kolmogorov Method (BKM). (Boykov & Kolmogorov , IEEE PAMI, 2004)

� The convergence time to the global minimum is O(N).

� T = 0; L3 (L ≤ 256) with pbc; 100 sets of {hi} for each Δ.

� Initial configuration a random mix of σi = ±1.

� The BKM yields a 99% overlap with the GS in the first iteration!

� (A mild “critical slowing down” observed as Δ → Δc .)

� Energy per spin in the GS � -3.05 (BKM)
� -2.69 (MC)
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GS of the Ising Model

� Δ = 0; ξ → ∞ as T → T+
c ; Tc = 4.5103.

� Equilibrium MC snapshot (643) at T = 4.515:

� Morphology is not as compact or well-defined.

� Morphology in the RFIM is well-defined even in the absence of
coexisting phases.
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Correlation Exponent ν

Plot of ξ(δ, L) vs. δ, where δ = (Δ−Δc)/Δc :

10
-2

10
-1

10
0

δ

10
0

10
1

10
2

ξ(
δ,

 L
)

L = 16
L = 32
L = 64
L = 128
L = 256

10
-2

10
-1

10
0

10
1

10
2

Lδ
ν

10
-2

10
-1

10
0

δν 
ξ 

(δ
, L

)

L = 16
L = 32
L = 64
L = 128
L = 256

(GPS, SK, VB & SP, EPL, 2011)

� ξ ∼ δ−ν when δ → 0+ (limited by L).

� Finite-size scaling ansatz: ξ(δ, L) = δ−ν f (Lδν).

� ν = 1.308± 0.005
(1.4 ± 0.2 Rieger & Young, J. Phys. A, 1993; 1.37 ± 0.09, Middleton & Fisher, PRB, 2001).
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C (r ,Δ) at small-r

� Scaling function exhibits a cusp-singularity:
C (r ,Δ) � 1− A (r/ξ)β + · · ·

� The cusp-exponent β quantifies interfacial
roughness.

� Interfaces are self-affine fractals:
ds = d − β.
(Wong & Bray, PRL, PRB, 1988; Barma, EPJB, 2008)

� In the ferromagnetic phase (Δ � Δc),
βferro � 0.66; ds � 2.34.

� In the paramagnetic phase (Δ > Δc),
βpara � 0.5; ds � 2.5.
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(GPS, SK, VB & SP, EPL, 2011)
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Related comments

� The value ds � 2.34 in the ferromagnetic phase is consistent with
analytical predictions. (Imry & Ma, PRL, 1976; Halpin-Healy, PRA, 1990)

� The paramagnetic phase of the d = 3 RFIM was shown to exhibit
percolation type of order. (Alava, et al., PRB, 2002; Ji & Robbins, PRB, 1992)

� The spanning cluster in d = 3 percolation has the fractal dimension
of ds � 2.5. (Stauffer and Aharony, 1992)

� Cusp-singularity has also been reported in fluctuation dominated
phase separation:

� Steady-state distribution of particles on a fluctuating surface.
(Das & Barma, PRL, 2000)

� Density correlation of ordered (active) nematics.
(Mishra & Ramaswamy, PRL, 2006)

� In both cases, interfaces are fuzzy or ill-defined.
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Fractal dimension

� Regular objects : M ∼ Rd , where d is the Euclidean dimension.

� Surface fractals: S ∼ Rds , where ds is the surface fractal dimension
and d − 1 ≤ ds < d .

Interfaces generated in fluid flows, burning wavefronts, pinning of
flux lines, deposition processes, etc.

� Mass fractals: M ∼ Rdm , where dm is the mass fractal dimension
and 1 ≤ dm < d .

DLA clusters, bacterial colonies, colloidal aggregates, etc .
Mass fractals are often bounded by surface fractals.

Usual quantities of interest are radius of gyration, roughness exponents,
fractal dimensions, etc. of domains and interfaces.
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Multi-scale domain morphologies

(a)
Diffusion limited aggregation (DLA) cluster created by spherical particles
of size a = 10 in units of the lattice spacing. (b) Structure factor,
S (k) vs. k , for the DLA cluster in (a). The straight lines denote the
mass fractal regime [S (k) ∼ k−dm with dm = 1.71; the surface fractal
regime [S (k) ∼ k−(2d−ds ) with ds = 1.6; and the Porod regime
[S (k) ∼ k−(d+1)].
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