

2449-9

38th Conference of the Middle European Cooperation in Statistical Physics -MECO38

25 - 27 March 2013

Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation

Nicolas WSCHEBOR PELLEGRINO Udelar, Montevideo, Uruguay & LPTMC UPMC Paris France

Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation

L. Canet LPMMC, UJF, Grenoble H. Chaté SPEC, CEA, Saclay B. Delamotte LPTMC, CNRS – UPMC, Paris T. Kloss LPMMC, CNRS – UJF, Grenoble N. Wschebor Udelar, Montevideo & LPTMC, UPMC, Paris

Presentation outline

KPZ equation

N. Wschebor

KPZ equation KPZ NPRG Results

(Very short) recall of the Kardar-Parisi-Zhang equation

- Interface growth
- The KPZ equation
- Multi-dimensional interface

2

Non Perturbative Renormalisation Group for KPZ

- NPRG for nonequilibrium systems
- Construction of an approximation scheme

Results

- Phase diagram and critical exponents
- Scaling in one dimension
- Comparison with exact scaling functions

KPZ equation

N. Wschebor

KPZ equation

interface growth KPZ equation higher dimensions

KPZ NPRG

Results

(Very short) recall of the Kardar-Parisi-Zhang equation

- Interface growth
- The KPZ equation
- Multi-dimensional interface
- Non Perturbative Renormalisation Group for KPZ
 - NPRG for nonequilibrium systems
 - Construction of an approximation scheme

3 Results

- Phase diagram and critical exponents
- Scaling in one dimension
- Comparison with exact scaling functions

Some examples of moving interfaces

KPZ equation

N. Wschebor

KPZ equation interface growth KPZ equation higher dimensions

KPZ NPRG

Results

Paper combustion (1D)

Molecular Beam Epitaxy (2D)

Kinetic roughening

KPZ equation

N. Wschebor

Generic scaling in all dimensions

KPZ equation interface growth KPZ equation higher dimensions

KPZ NPRG

Results

Stationary correlation function (in the co-moving frame) :

$$\mathcal{C}(t,ec{x})=\left\langle h(t,ec{x})h(0,0)
ight
angle$$

Has the following behavior : $C(t, \vec{x}) \sim t^{2\chi/z}$ $t \ll |\vec{x}|^z$ $C(t, \vec{x}) \sim |\vec{x}|^{2\chi}$ $t \gg |\vec{x}|^z$

Scaling form : $C(t, \vec{x}) \sim |\vec{x}|^{2\chi} F(t/|\vec{x}|^z)$

- universal roughness χ and dynamical *z* exponents
- universal scaling function F

- $\chi = (2 d)/d$ z = 2
- $\begin{array}{c} \chi > \mathbf{0} \\ \mathbf{z} + \chi = \mathbf{2} \end{array}$

A continuous model : the KPZ equation

KPZ equation

N. Wschebor

KPZ equation interface growth KPZ equation higher dimensions

KPZ NPRG

Results

One of the simplest nonlinear Langevin equations

$$\frac{\partial h(t,\vec{x})}{\partial t} = \nu \nabla^2 h(t,\vec{x}) + \frac{\lambda}{2} \left(\nabla h(t,\vec{x})\right)^2 + \eta(t,\vec{x})$$

Kardar, Parisi and Zhang, PRL (1986)

- η : Gaussian uncorrelated white noise $\langle \eta(t, \vec{x}) \eta(t', \vec{x}') \rangle = 2 D \delta^d(\vec{x} \vec{x}') \delta(t t')$
- $\nu \nabla^2 h$: smoothening surface tension
- $\lambda(\nabla h)^2$: nonlinear growth along the local normal

Equivalence with other stochastic equations

- Burgers' equation for randomly stirred fluids ($\vec{u} \propto \nabla h$)
- Directed Polymer in Random Media ($Z = e^{(\lambda/2\nu)h}$)

The KPZ universality class

KPZ equation

N. Wschebor

Large universality class

KPZ equation interface growth KPZ equation higher dimensions

KPZ NPRG

Results

- discrete models ballistic deposition, Eden clusters, RSOS models, polynuclear growth...
- experiments paper combustion, bacterial colony growth, turbulent liquid crystal...

Very studied theoretically :

- before 2000 : numerics, RG, approximate methods Frey and Täuber, PRE (1994), Wiese, J. Stat. Phys. (1998)
- *last decade* : exact results in d = 1 for $t \to \infty$ Johansson, Commun. Math. Phys. (2000), Prähofer and Spohn, PRL (2000), Prähofer and Spohn, J. Stat. Phys. (2004), Sasamoto, J. Phys. A (2005).
- *since 2010* : *solution at finite t in d* = 1 Sasamoto and Spohn, PRL (2010), J. Stat. Phys. (2010), Amir, Corwin and Quastel, *Commun. Pure Appl. Math.* (2011), Dotsenko, *Europhys. Lett.* (2010), Calabrese, Le Doussal and Rosso, *Europhys. Lett.* (2010), Calabrese and Le Doussal, PRL (2011), Imamura and Sasamoto, J. Phys. A (2011), PRL (2012).

One-dimensional interface

High-precision experiments

KPZ equation

N. Wschebor

KPZ equation interface growth KPZ equation higher dimensions

KPZ NPRG

Results

Convection of turbulent nematic liquid crystals

high-precision measurements of growing clusters with circular and flat geometries

Takeuchi and Sano, PRL (2010), J. Stat. Phys. (2012), Takeuchi, Sano, Sasamoto, Spohn, Sci. Rep. (2011) \rightarrow Compares favourably with exact results.

Multi-dimensional interface Other approaches

KPZ equation

N. Wschebor

KPZ equation

higher dimensions

interface growth

KPZ equation

KPZ NPRG

Results

Numerical approaches

- discrete models Tang et al., (1992) Pagnani and
 Parisi, PRE (2013) E. Marinari et al., (2012), Kelling and Ódor,
 PRE (2011) T. Halpin-Healy, PRL (2012)
- direct integrations Miranda and Reis, (2008)
- real space NRG Castellano *et al.*, (1998-99)

Analytical approaches

o perturbative FRG

Le Doussal and Wiese, **PRE** (2005)

Mode-Coupling Theory

 $d_c \simeq 2.5$

 $d_{c} = \infty$

*d*_c = 4

Frey, Täuber and Hwa, **PRE** (1996), Colaiori and Moore, **PRL** (2001)

Self-Consistent Expansion

Schwartz and Edwards, (1992), Schwartz and Katzav, (2008)

 $\begin{array}{c|ccccc}
d & \chi \\
2 & 0.384 \\
3 & 0.304 \\
4 & 0.256 \\
d_c = \infty & 0
\end{array}$

h d scaling function

exponents

For d > 1, an analytical nonperturbative approach is needed to control the rough phase

Non Perturbative Renormalisation Group for the KPZ equation

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

nonequilibrium NPRG effective action

Results

(Very short) recall of the Kardar-Parisi-Zhang equation
 Interface growth

- The KPZ equation
- Multi-dimensional interface

Non Perturbative Renormalisation Group for KPZ

- NPRG for nonequilibrium systems
- Construction of an approximation scheme

3 Results

2

- Phase diagram and critical exponents
- Scaling in one dimension
- Comparison with exact scaling functions

Field theory for the KPZ equation

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

nonequilibrium **NPRG** effective action

Results

Field theory for a Langevin equation

build generating functional to compute noise averages $\langle \mathcal{O} \rangle_n$ Janssen, Z. Phys. B (1976), de Dominicis, J. Phys. (Paris) (1976)

- introduce response field \tilde{h} to enforce equation of motion
- Integrate over the Gaussian noise distribution

Langevin dynamics : , , generating functional :

KPZ action

$$\mathcal{S}_{\mathsf{KPZ}}[\varphi,\tilde{\varphi}] = \int d^d \vec{x} \, dt \, \left\{ \tilde{\varphi} \left[\partial_t \varphi - \nu \, \nabla^2 \varphi - \frac{\lambda}{2} \, (\nabla \varphi)^2 \right] - \mathcal{D} \, \tilde{\varphi}^2 \right\}$$

Nonperturbative Renormalization Group for nonequilibrium systems

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

nonequilibrium NPRG effective action

Results

Berges, Tetradis and Wetterich, **Phys. Rep.** (2002), Canet, Delamotte, Chaté, **J. Phys. A** (2011), Berges, Mesterházy, (2012), Kloss, Kopietz, **PRB** (2011)

Wilson's philosophy : Scale dependent generating functional

$$\mathcal{Z}_{\kappa}[j,\tilde{j}] = \int \mathcal{D}\varphi \mathcal{D}\tilde{\varphi} \ e^{-\mathcal{S}[\varphi,\tilde{\varphi}] - \Delta \mathcal{S}_{\kappa} + \int (j\varphi + \tilde{j}\tilde{\varphi})}$$
$$\Delta \mathcal{S}_{\kappa}[\psi,\tilde{\psi}] = \frac{1}{2} \int_{\vec{x},t} \left(\psi \,\tilde{\psi}\right) \mathcal{R}_{\kappa}(\nabla^{2},\partial_{t}) \left(\begin{array}{c}\psi\\\tilde{\psi}\end{array}\right)$$

Special constraints for KPZ

from Ito's discretization, causality and symmetries

$$\mathcal{R}_{\kappa}(\omega,\vec{q}) = \mathbf{r}_{\kappa} \left(\frac{q^2}{\kappa^2}\right) \begin{pmatrix} 0 & \nu_{\kappa} q^2 \\ \nu_{\kappa} q^2 & -2D \end{pmatrix}$$

Nonperturbative Renormalization Group for nonequilibrium systems

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

nonequilibrium NPRG effective action

Results

$$\Gamma_{\kappa}[\varphi,\tilde{\varphi}] + \log \mathcal{Z}_{\kappa}[j,\tilde{j}] = \int j\varphi + \tilde{j}\tilde{\varphi} - \Delta \mathcal{S}_{\kappa}[\varphi,\tilde{\varphi}]$$

Exact flow equation for Γ_{κ}

Legendre transform

$$\partial_{\kappa} \Gamma_{\kappa} = \frac{1}{2} \operatorname{Tr} \int_{\omega, \vec{q}} \partial_{\kappa} \mathcal{R}_{\kappa} \cdot \mathcal{G}_{\kappa} \quad \text{with} \quad \mathcal{G}_{\kappa} = \left[\Gamma_{\kappa}^{(2)} + \mathcal{R}_{\kappa} \right]^{-1}$$

No exact solution, but useful to implement approximations not based in perturbation theory.

Construction of an approximation scheme Quest of a scheme preserving symmetries

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

nonequilibrium NPRG effective action

Results

calculate full *momentum and frequency dependent* two-point functions in the stationary regime.

$$\partial_{\kappa}[\Gamma_{\kappa}^{(2)}]_{ij} = \operatorname{Tr} \int \partial_{\kappa} \mathcal{R}_{\kappa} \cdot \mathcal{G}_{\kappa} \cdot \left(-\frac{1}{2} \left[\Gamma_{\kappa}^{(4)} \right]_{ij} + \left[\Gamma_{\kappa}^{(3)} \right]_{i} \cdot \mathcal{G}_{\kappa} \cdot \left[\Gamma_{\kappa}^{(3)} \right]_{j} \right) \cdot \mathcal{G}_{\kappa}$$

⇒An extremely efficient approximation scheme exist for correlation functions : close equations by expanding vertices in internal momentum and frequency.

Blaizot, Méndez-Galain and Wschebor, Phys. Lett. B (2006), Benitez et al., PRE (2009)

Problem

Our aim

Hard to make compatible with Ward identities amongst $\Gamma_{\kappa}^{(l,m)}$'s !

Construction of an approximation scheme Symmetries of the KPZ action

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG nonequilibrium NPRG

effective action

Results

Symmetries

gauged shift symmetry $\varphi(t, \vec{x}) \rightarrow \varphi(t, \vec{x}) + c(t)$

gauged Galilean symmetry $\varphi(t, \vec{x}) \rightarrow \vec{x} \cdot \partial_t \vec{v}(t) + \varphi(t, \vec{x} + \lambda \vec{v}(t))$ $\tilde{\varphi}(t, \vec{x}) \rightarrow \tilde{\varphi}(t, \vec{x} + \lambda \vec{v}(t))$

time reversal symmetry in *d* =

 $arphi(t, ec{x})
ightarrow - arphi(-t, ec{x})$ $ilde{arphi}(t, ec{x})
ightarrow ilde{arphi}(-t, ec{x}) + rac{
u}{D}
abla^2 arphi(-t, ec{x})$

Ward identities

$$\Gamma^{(1,1)}_{\kappa}(\omega,ec{p}=0)=i\omega$$

$$egin{aligned} &\dot{\omega}rac{\partial}{\partialec{p}} \Gamma^{(2,1)}_\kappa(\omega,ec{p}=ec{0};\omega_1,ec{p}_1) = \ &\lambdaec{p}_1\left[\Gamma^{(1,1)}_\kappa(\omega+\omega_1,ec{p}_1) -\Gamma^{(1,1)}_\kappa(\omega_1,ec{p}_1)
ight] \end{aligned}$$

$$2\Re\Gamma_{\kappa}^{(1,1)}(\omega,\vec{p}) = -\frac{\nu}{D}p^{2}\Gamma_{\kappa}^{(0,2)}(\omega,\vec{p})$$

Construction of an approximation scheme

KPZ equation

N. Wschebor

Strategy

KPZ equation

KPZ NPRG

nonequilibrium NPRG

effective action

Results

build a non-trivial Galilean invariant ansatz for Γ_{κ}

Analogy with fluid mechanics

introduce covariant time derivatives

$$\tilde{D}_t \equiv \partial_t - \lambda \nabla \varphi(t, \vec{x}) \cdot \nabla \qquad D_t \varphi(t, \vec{x}) \equiv \partial_t \varphi(t, \vec{x}) - \frac{\lambda}{2} (\nabla \varphi(t, \vec{x}))^2$$

Second Order (SO) Ansatz for the effective action

$$\Gamma_{\kappa}[\psi,\tilde{\psi}] = \int_{t,\vec{x}} \left\{ \tilde{\psi} \boldsymbol{f}^{\lambda}_{\kappa} \boldsymbol{D}_{t} \psi - \frac{1}{2} \left[\nabla^{2} \psi \boldsymbol{f}^{\nu}_{\kappa} \tilde{\psi} + \tilde{\psi} \boldsymbol{f}^{\nu}_{\kappa} \nabla^{2} \psi \right] - \tilde{\psi} \boldsymbol{f}^{\mathcal{D}}_{\kappa} \tilde{\psi} \right\}$$

with f_{κ}^{χ} three arbitrary functions $f_{\kappa}^{\chi} \equiv f_{\kappa}^{\chi}(-\tilde{D}_{t}^{2},-\nabla^{2})$

Canet, Chaté, Delamotte and Wschebor, PRE (2011)

Integration of the flow equations

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG nonequilibrium

NPRG effective action

Results

It is convenient to use dimensionless renormalised quantities

- three running functions
 - $$\begin{split} \hat{f}^{D}_{\kappa}(\hat{\varpi}^{2},\hat{p}^{2}) &= f^{D}_{\kappa}(\omega^{2},p^{2})/D_{\kappa} \qquad \hat{p} = p/\kappa \\ \hat{f}^{\nu}_{\kappa}(\hat{\varpi}^{2},\hat{p}^{2}) &= f^{\nu}_{\kappa}(\omega^{2},p^{2})/\nu_{\kappa} \qquad \hat{\varpi} = \omega/(D_{\kappa}\kappa^{2}) \\ \hat{f}^{\lambda}_{\kappa}(\hat{\varpi}^{2},\hat{p}^{2}) &= f^{\lambda}_{\kappa}(\omega^{2},p^{2}) \end{split}$$
- two anomalous dimensions $\eta_{\kappa}^{D} = -\partial_{s} \ln D_{\kappa}$, $\eta_{\kappa}^{\nu} = -\partial_{s} \ln \nu_{\kappa}$
- one dimensionless coupling $\hat{g}_{\kappa} = \lambda^2 D_{\kappa} / \nu_{\kappa}^3 \kappa^{d-2}$

Numerical integration of the flow equations

at SO for d = 1 and performing the further approximation $\hat{f}_{\kappa}^{\chi}(\omega, \vec{p}) \rightarrow \hat{f}_{\kappa}^{\chi}(\vec{p})$ for d > 1.)

Results Outline

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results

phase diagram 1*d* scaling 1*d* scaling functions (Very short) recall of the Kardar-Parisi-Zhang equation
 Interface growth

- The KPZ equation
- Multi-dimensional interface
- Non Perturbative Renormalisation Group for KPZ
 - NPRG for nonequilibrium systems
 - Construction of an approximation scheme

Results

- Phase diagram and critical exponents
- Scaling in one dimension
- Comparison with exact scaling functions

Integration of the flow equations

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram

phase diagram

1*d* scaling 1*d* scaling functions

Numerical integration of the flow equations

Renormalisation scale $s = \ln(\kappa/\Lambda)$ from s = 0 to $s \to -\infty$

In dimensions d > 2, the flow always leads to one of the three fixed points EW, RT or KPZ.

Results in physical dimensions (NLO)

Phase diagram and critical exponents

Phase diagram

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram 1d scaling 1d scaling functions

 $\nu_{\kappa} \sim \kappa^{-\eta_*^{\nu}} = \kappa^{-\chi}$ and $z + \chi = 2$ $\chi \overline{NLO}$ χ num. 1/2 1/2 0.384 0.373

0.180

0.304

Canet, Chaté, Delamotte, Wschebor, PRL (2010), PRE (2011), Kloss, Canet, Wschebor, PRE (2012)

Results in one dimension (SO)

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram 1*d* scaling

1*d* scaling functions

Generalized fluctuation-dissipation theorem in d = 1

• only one function left $\hat{f}_{\kappa}^{\nu} = \hat{f}_{\kappa}^{D} \equiv \hat{f}_{\kappa}, \ \hat{f}_{\kappa}^{\lambda} = 1.$ • Exponents

$$u_{\kappa} = D_{\kappa}, \quad \eta_{\kappa}^{\nu} = \eta_{\kappa}^{D} \equiv \eta_{\kappa} \rightarrow \eta_{*} \stackrel{d=1}{=} 1/2$$

 $\chi = (2 - d + \eta_{\kappa}^{D} - \eta_{\kappa}^{\nu})/2 \stackrel{d=1}{=} 1/2,$

 $z = 2 - \chi \stackrel{d=1}{=} 3/2$

Dimensionless flow equations

$$\begin{array}{ll} \partial_{s}\hat{f}_{\kappa}(\hat{\varpi},\hat{\rho}) &= \eta_{\kappa}\hat{f}_{\kappa} + \hat{\rho}\,\partial_{\hat{\rho}}\hat{f}_{\kappa} + (2-\eta_{\kappa})\hat{\varpi}\,\partial_{\hat{\varpi}}\hat{f}_{\kappa} + I_{\kappa}(\hat{\varpi},\hat{\rho})\\ \partial_{s}\hat{g}_{\kappa} &= \hat{g}_{\kappa}(2\eta_{\kappa}-1) \end{array}$$

Decoupling of the nonlinear term

 $I_{\kappa} \rightarrow 0$ in the regime \hat{p} and/or $\hat{\varpi} \gg 1$

Canet, Delamotte, Chaté and Wschebor, PRE (2011)

Results in one dimension (SO)

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram

1*d* scaling 1*d* scaling functions General solution at the fixed point

in the regime \hat{p} and/or $\hat{\varpi} \gg 1$

$$\hat{f}^{D}_{*}(\hat{\varpi},\hat{p}) = \frac{1}{\hat{p}^{\eta_{D}}}\hat{\zeta}^{D}_{*}\left(\frac{\hat{\varpi}}{\hat{p}^{z}}\right) \stackrel{d=1}{=} \frac{1}{\hat{p}^{1/2}}\hat{\zeta}\left(\frac{\hat{\varpi}}{\hat{p}^{3/2}}\right)$$

Generic scaling for the dimensionful correlation function

physical limit $\kappa \to 0$ at fixed ϖ , *p* equivalent to $\hat{p} = p/\kappa$ and/or $\hat{\varpi} = \varpi/(\kappa^2 D_\kappa) \gg 1$

$$egin{aligned} C(arpi, oldsymbol{p}) &= -rac{\Gamma^{(0,2)}(arpi, oldsymbol{p})}{|\Gamma^{(1,1)}(arpi, oldsymbol{p})|^2} \stackrel{d \equiv 1}{=} rac{2}{oldsymbol{p}^{7/2}} rac{\hat{\zeta}\left(rac{\hat{arpi}}{\hat{eta}^{3/2}}
ight)}{rac{\hat{arphi}^2}{\hat{eta}^3} + \hat{\zeta}^2\left(rac{\hat{arpi}}{\hat{eta}^{3/2}}
ight)} \ &\equiv rac{2}{D_0 oldsymbol{p}^{7/2}} \stackrel{oldsymbol{\kappa}}{oldsymbol{F}} \left(rac{arpi}{D_0 oldsymbol{p}^{3/2}}
ight) \qquad D_\kappa = D_0 \kappa^{-\eta^D_*} \end{aligned}$$

Results in one dimension (SO) Proof of generic scaling

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

phase diagram

Results

1d scaling

1d scaling

functions

Scaling function $\overset{\bullet}{F}$ associated with the correlation function

Comparison with exact scaling functions Definition of different scaling functions

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram

1*d* scaling

scaling function g defined as $C(t, x) = \alpha t^{2/3} g(\beta x/t^{3/2})$ with arbitrary constants α and β

- *g* dimensionless \longrightarrow fixes dependence in λ , ν , *D*
- g universal \rightarrow fixes dependence in D_0
- numerical normalisation fixed according to [*]

Introduction of 3 functions

Normalisations

$$f(y) = \frac{g''(y)}{4}$$

$$\tilde{f}(k) = 2 \int_0^\infty dy \cos(ky) f(y)$$

$$\tilde{f}(\tau) = 2 \int_0^\infty dk \cos(k\tau) \tilde{f}(k^{2/3})$$

 $\mathring{F}(\tau) \rightarrow 2 \sqrt{A} \mathring{f}(\sqrt{A} \tau)$

$$A = 2\lambda^2 D / (\nu^3 D_0^2)$$

Canet, Delamotte, Chaté, Wschebor, PRE (2011)

* Prähofer and Spohn, J. Stat. Phys. (2004)

Comparison with exact scaling functions NPRG at SO scaling function in Fourier space

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram 1d scaling 1d scaling functions

Canet, Delamotte, Chaté and Wschebor, PRE (2011), Prähofer and Spohn, J. Stat. Phys. (2004)

Comparison with exact scaling functions

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results

phase diagram

1*d* scaling

functions

Universal amplitude ratio

 $g_0 = c \int_0^\infty d\tau \ \tau^{2/3} \ \mathring{f}(\tau)$ $c = 2\Gamma(1/3)/\pi^2$

	g 0
exact	1.15039
NPRG	1.19(1)

Canet, Delamotte, Chaté and Wschebor, PRE (2011), Prähofer and Spohn, J. Stat. Phys. (2004)

Summary and outlook

KPZ equation

N. Wschebor

KPZ equation

KPZ NPRG

Results phase diagram 1d scaling 1d scaling

1d scaling functions

- NPRG framework for nonequilibrium systems
- approximation scheme for the KPZ equation
- scaling functions match very well exact results in d = 1
- first predictions of scaling functions for d > 1

Outlook

Summary

- height probability distribution
- upper critical dimension *d_c*
- Navier and Stokes equation

