

2449-6

38th Conference of the Middle European Cooperation in Statistical Physics -MECO38

25 - 27 March 2013

Quantum Phases and Non-equilibrium Dynamics with Rydberg Gases

Tommaso MACRI' Max Planck Institute for the Physics of Complex Systems Dresden Germany

Quantum phases and non-equilibrium dynamics with Rydberg gases

Tommaso Macrì

Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

Trieste, March 25 2013

Manipulation of ultracold atomic gases with long range interactions

Magnetic atoms & Polar molecules

H. P. Büchler, E. Demler, M.Lukin, A. Micheli, N. Prokof'ev, G. Pupillo and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007)
T. Lahaye, C. Menotti, L. Santos, M. Lewenstein and T. Pfau, Rep. Prog. Phys. 72, 126401 (2009)
C. Trefzger, C. Menotti, B. Capogrosso-Sansone and M. Lewenstein, J. Phys. B 44, 193001 (2011)
M. Baranov, M. Dalmonte, G. Pupillo and P. Zoller, Chemical Reviews 112, 5012 (2012)

Manipulation of ultracold atomic gases with long range interactions

Rydberg gases

Manipulation of ultracold atomic gases with long range interactions

Rydberg gases

Strong interactions compared to other systems

Thursday, March 28, 2013

Manipulation of ultracold atomic gases with long range interactions

Rydberg gases

COHERENT MANY BODY PHYSICS

Fast dynamics - internal degrees of freedom: dynamical creation of spatially ordered structures in spin models

Slow dynamics - motional degrees of freedom: defectinduced supersolidity vs. Density wave supersolidity

T. M., F. Maucher, F. Cinti, T. Pohl, ArXiv 1212.6934v1 (2012)

F. Cinti, T. M., W. Lechner G. Pupillo, and T. Pohl, ArXiv 1302.4576v1 (2013)

Rydberg gases

COHERENT MANY BODY PHYSICS

Fast dynamics - internal degrees of freedom: dynamical creation of spatially ordered structures in spin models

Slow dynamics - motional degrees of freedom: defectinduced supersolidity vs. Density wave supersolidity

Wolfgang Lechner

Guido Pupillo

Thomas Pohl

Quantum dynamics

$$\hat{H} = \frac{\Omega}{2} \sum_{i} \hat{\sigma}_{eg}^{(i)} + \hat{\sigma}_{ge}^{(i)}$$

 Ω Rabi frequency

Quantum dynamics

$$\hat{H} = \frac{\Omega}{2} \sum_{i} \hat{\sigma}_{eg}^{(i)} + \hat{\sigma}_{ge}^{(i)} - \Delta \sum_{i} \hat{\sigma}_{ee}^{i}$$

 Ω Rabi frequency

 Δ Detuning

Quantum dynamics

$$\hat{H} = \frac{\Omega}{2} \sum_{i} \hat{\sigma}_{eg}^{(i)} + \hat{\sigma}_{ge}^{(i)} - \Delta \sum_{i} \hat{\sigma}_{ee}^{i} + \sum_{i < j} \frac{\tilde{C}_{6}}{r_{ij}^{6}} \hat{\sigma}_{ee}^{(i)} \hat{\sigma}_{ee}^{(j)}$$

Quantum simulator for long range spin models with longitudinal and transverse field

 Δ Detuning

 $|e\rangle$

|g
angle

Quantum dynamics $\hat{H} = \frac{\Omega}{2} \sum_{i} \hat{\sigma}_{eg}^{(i)} + \hat{\sigma}_{ge}^{(i)} - \Delta \sum_{i} \hat{\sigma}_{ee}^{i} + \sum_{i < i} \frac{C_6}{r_{ij}^6} \hat{\sigma}_{ee}^{(i)} \hat{\sigma}_{ee}^{(j)}$ Quantum simulator for long range spin models with longitudinal and transverse field $\Omega~\sim 0.3~{\rm h~MHz}$ $\Delta \sim 1-5 \text{ h MHz}$ $\frac{\tilde{C}_6}{a^6} \sim 100 \text{ h GHz } @ \text{n} = 43$ Energy scales: interaction is by far the largest scale |g angle $|g\rangle$

Quantum dynamics $\hat{H} = \frac{\Omega}{2} \sum_{i} \hat{\sigma}_{eg}^{(i)} + \hat{\sigma}_{ge}^{(i)} - \Delta \sum_{i} \hat{\sigma}_{ee}^{i} + \sum_{i < i} \frac{C_6}{r_{ij}^6} \hat{\sigma}_{ee}^{(i)} \hat{\sigma}_{ee}^{(j)}$ Quantum simulator for long range spin models with longitudinal and transverse field $\Omega \sim 0.3 \text{ h MHz}$ $\Delta \sim 1-5 \text{ h MHz}$ $\frac{\tilde{C}_6}{a^6} ~\sim 100~\mathrm{h~GHz}~@~\mathrm{n} = 43$ **Energy scales:** interaction is by far the largest scale $|g\rangle$ $|g\rangle$ Time scales: atoms are frozen, only spin degrees of freedom

Experiment

Step 3: Remove optically the ground state atoms

Step 2: Fast resonant excitation

coherent dynamics

Step 4: De-excite and detect

Rydberg atoms

P. Schauß, M. Chenau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, I. Bloch, Nature 491, 87 (2012)

Experiment (ongoing)

Step 1: Deep Mott insulator

Step 3: Remove optically the ground state atoms

Step 2: Off-resonant non constant excitation coherent dynamics

Step 4: De-excite and detect

Rydberg atoms

Thursday, March 28, 2013

Thursday, March 28, 2013

Slow dynamics **Rydberg dressing ATOMIC MOTION Excitation probability** $p_{ex} = \left(\frac{\Omega}{2\Delta}\right)^2$ **Correlated internal dynamics (spin** dynamics) Enhanced lifetime $\tau_{\rm eff} = p_{\rm e}^{-1} \tau_{\rm rad} \approx 1 {\rm s}$ diagonal basis $\Omega \ll \Delta$ Groundstate $\tau_{\rm int} \ll \overline{\tau_{\rm rad} \approx 100 \mu s}$ **Rydberg** $|\tilde{g}\rangle = |g\rangle + \frac{\Omega}{2\Lambda}|e\rangle$ motional dynamics $au_{ m mot} \gg au_{ m rad}$... too slow compared to Rydberg state Effective description with one level lifetime

Soft-core interactions

Rydberg blockade

Rydberg dressing

Blockade radius:

$$R_c = \left(\frac{C_6}{2\Delta}\right)^{1/6}$$

Effective interaction:

$$U(r) = \frac{\tilde{C}_6}{r^6 + R_c^6} \qquad \tilde{C}_6 = \left(\frac{\Omega}{2\Delta}\right)^4 C_6$$

Simultaneous excitations blocked

Many body description perturbation expansion in $\Omega/\Delta < <1$:

$$E_N = \sum_{i < j} \frac{\tilde{C}_6}{r_{ij}^6 + R_c^6}$$

Effective description with one level

N. Henkel, R. Nath, and T. Pohl, PRL 104, 195302 (2010)

F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S. Skupin, and T. Pohl, PRL 106, 170401 (2011)

N. Henkel, F. Cinti, P. Jain, G. Pupillo and T. Pohl, PRL 108, 265301 (2012)

Many body framework

Model potential:

$$U(\mathbf{r}) = \begin{cases} V_0, & |\mathbf{r}| < R_0 \\ 0, & \text{otherwise} \end{cases}$$

Approaches to the problem:

• Monte Carlo

$$\hat{H} = -\sum_{i=1}^{N} \frac{1}{2} \nabla^2 + \alpha' \sum_{i < j} \theta \left(1 - |\mathbf{r_i} - \mathbf{r_j}| \right)$$

 Mean field theory Gross-Pitaevskii equation

$$i\frac{\partial\psi(\mathbf{r},t)}{\partial t} = -\frac{1}{2}\nabla^2\psi(\mathbf{r},t) + \alpha \int d\mathbf{r}'\theta(1-|\mathbf{r}-\mathbf{r}'|)|\psi(\mathbf{r}',t)|^2\psi(\mathbf{r},t)$$

 V_0 U(r)Ro **Dimensionless parameters** 1) $\alpha' = \frac{V_0 m R_0^2}{\hbar^2}$ $ho R_0^2$ 2) $\alpha = \alpha' \rho R_0^2$

Phase diagram

PATH INTEGRAL MC IN 2D

MEAN FIELD APPROACH

Variational wavefunction: Gaussians in a triangular lattice

Both approaches predict cluster supersolid in the high density/low interaction limit, what else?

Defect-induced supersolidity

$$A \rho \approx 2$$

From crystal to SS phase removing particles randomly

Excitation spectrum

- Detect the phases experimentally
- Mean field: analytical results in the homogeneous, good for wide energy range
- QMC: dyn. struct. factor, long. excitations at low energies, high computational effort

Mean field approach

Bogoliubov equations for homogeneous ground state $\delta \psi(\mathbf{r},t) = e^{-i\mu t} \left(u(\mathbf{r})e^{-i\omega t} - v^*(\mathbf{r})e^{i\omega t} \right)$

$$\begin{cases} \left(-\frac{1}{2}\nabla^2 - \omega\right)u(\mathbf{r}) + \alpha R_0^2 n \int d\mathbf{r}' \ U(\mathbf{r} - \mathbf{r}')\left(u(\mathbf{r}) - v(\mathbf{r}')\right) = 0\\ \left(-\frac{1}{2}\nabla^2 - \omega\right)v(\mathbf{r}) + \alpha R_0^2 n \int d\mathbf{r}' \ U(\mathbf{r} - \mathbf{r}')\left(v(\mathbf{r}) - u(\mathbf{r}')\right) = 0 \end{cases}$$

Excitation spectrum

Conclusions

- *Rydberg gases as quantum simulators of long range spin models and exotic quantum phases.*
- Fast dynamics: limited coherence time ~10 μs
 Dynamical creation of mesoscopic crystalline phases.

Conclusions

- *Rydberg gases as quantum simulators of long range spin models and exotic quantum phases.*
- Fast dynamics: limited coherence time ~10 μs
 Dynamical creation of mesoscopic crystalline phases.
- Slow dynamics: coherence time enhanced by dressing ~ 1 s
 Defect-induced vs. Density wave supersolidity.
 Excitation spectra to probe the many body phases.

Conclusions

- Rydberg gases as quantum simulators of long range spin models and exotic quantum phases.
- Fast dynamics: limited coherence time ~10 μs
 Dynamical creation of mesoscopic crystalline phases.
- Slow dynamics: coherence time enhanced by dressing ~ 1 s
 Defect-induced vs. Density wave supersolidity.
 Excitation spectra to probe the many body phases.

