



2451-8

Workshop on Interferometry and Interactions in Non-equilibrium Meso- and Nano-systems

8 - 12 April 2013

Magnetic field effects on the finite-frequency noise of a kondo quantum dot out of equilibrium

Sabine ANDERGASSEN

University of Vienna, Boltzmanngasse 5, 1090 Vienna Austria

# Magnetic field effects on the finite-frequency noise of a Kondo quantum dot out of equilibrium

S. Andergassen

S. Müller, M. Pletyukhov, D. Schuricht

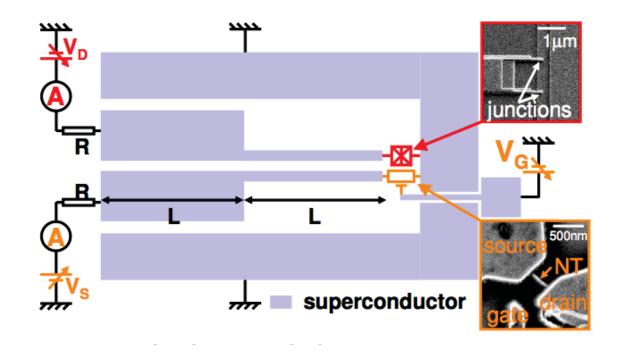


## **Motivation**

finite-frequency current noise

$$S^{\pm}(\Omega) = \frac{1}{2} \int_{-\infty}^{\infty} dt \, e^{i\Omega t} \langle [I(t) - \langle I \rangle, I(0) - \langle I \rangle]_{\pm} \rangle$$

now accessible experimentally in Kondo regime



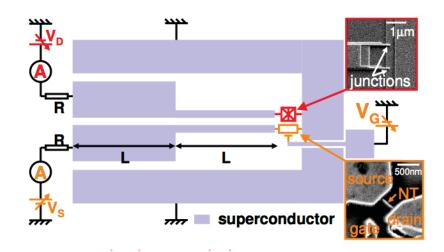
## **Motivation**

finite-frequency current noise

$$S^{\pm}(\Omega) = \frac{1}{2} \int_{-\infty}^{\infty} dt \, e^{i\Omega t} \langle [I(t) - \langle I \rangle, I(0) - \langle I \rangle]_{\pm} \rangle$$

#### now accessible experimentally in Kondo regime

- → signatures of quantum many-body effects in non-equilibrium dynamics
  - reveals characteristic time scales
  - excitation dynamics
- → understanding of *basic mechanisms*

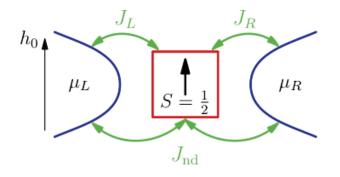


## **Outline**

- → Motivation
- → Method: Real-time RG
- → Results for *non-equilibrium Kondo quantum dot* 
  - magnetic field effects on finite-frequency noise
  - experimental observation
  - ac conductance
- → Conclusion

# Kondo quantum dot

#### minimal model for quantum dot dominated by spin fluctuations



$$\mu_{L/R} = \pm V/2$$

$$H = H_{\text{res}} + h_0 S^z + \frac{1}{2} \sum_{\alpha \alpha' k k' \sigma \sigma'} J_{\alpha \alpha'} a^{\dagger}_{\alpha k \sigma} \mathbf{S} \cdot \boldsymbol{\sigma}_{\sigma \sigma'} a_{\alpha' k' \sigma'}$$

isotropic exchange interaction  $J_{\rm nd}^2 = J_L J_R$ with asymmetry  $r = J_L/J_R$ 

#### calculation of noise

introduce auxiliary function 
$$C_{II}^{\pm}(\Omega) = \int_{-\infty}^{0} dt \, e^{-i\Omega t} \langle [I(0), I(t)]_{\pm} \rangle$$

$$\to S^{\pm}(\Omega) = \operatorname{Re} C_{II}^{\pm}(\Omega)$$

Schuricht, Schoeller, PRB (2009)

#### Real-time RG

von Neumann equation 
$$\dot{
ho}(t)=-\mathrm{i}\left[H,
ho(t)
ight]=-\mathrm{i}m{L}
ho(t)$$
  $ho(0)=
ho_D(0)\,
ho_L^{eq}\,
ho_R^{eq}$ 

Liouvillian  $\boldsymbol{L} = L_{res} + L_D + L_{ex}$ 

ightarrow quantum kinetic equation for  $ho_D(t)={
m Tr}_{res}\,
ho(t)$ 

$$\dot{
ho}_D(t) = -i L_D 
ho_D(t) - i \int_0^t dt' \Sigma(t-t') 
ho_D(t')$$

Laplace transform

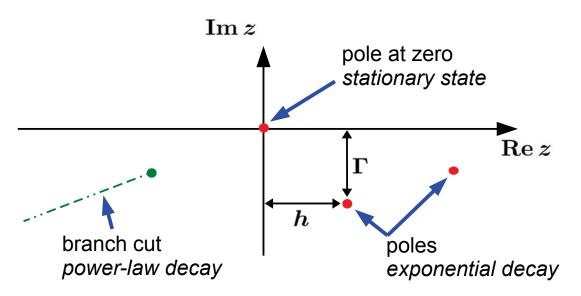
$$ho_D(z) = \int_0^\infty dt \, e^{\mathrm{i}zt} \, 
ho_D(t) = rac{i}{E - L_D - \mathbf{\Sigma}(z)} 
ho_D(t=0)$$

 $\rightarrow$  formulate RG for  $L^{eff}(z) = L_D + \Sigma(z)$ 

## Stationary state and time evolution

$$ho_D(z) = rac{\mathrm{i}}{z - L_D^{eff}(z)} 
ho_D(0)$$
 determines relaxation dynamics

analytic structure of  $L_D^{eff}(z)$ 



- → relaxation rates identified by microscopic cutoff scales
- ightarrow closed analytic form of  $L_D^{eff}(z)$  beyond Markovian theories

→ time evolution determined by inverse Laplace transform

# Symmetric and antisymmetric noise

diagrammatic expansion in renormalized  $J_{
m nd}$ 

 $\rightarrow$  analytic solution of flow equations at weak coupling  $\Lambda_c = \max\{|\Omega|, |V|, |h|\} \gg T_K$ 

$$S^{+}(\Omega) = \frac{\pi}{8} J_{\text{nd}}^{2} M h + \frac{\pi}{8} J_{\text{nd}}^{2} \sum_{\sigma, \eta = \pm} |\Omega + \sigma V + \eta h|_{2} + \frac{\pi}{2} J_{\text{nd}}^{2} \sum_{\sigma = \pm} \left[ M^{2} |\Omega + \sigma V| - \left( M^{2} - \frac{1}{4} \right) |\Omega + \sigma V|_{1} \right]$$

$$S^{-}(\Omega) = \frac{3\pi}{4} J_{\mathrm{nd}}^{2} \Omega + \frac{\pi}{4} J_{\mathrm{nd}}^{2} M \sum_{\sigma, \eta = \pm} \eta |\Omega + \sigma V + \eta h|_{2}$$

with 
$$|x|_i = \frac{2x}{\pi} \arctan\left(\frac{x}{\Gamma_i}\right)$$

- renormalized magnetic field  $h = h_0(1 - J)$ 

- magnetization 
$$M = -\frac{(1+r^2)h}{2(1+r^2)|h| + 2r(|V-h| + |V+h|)}$$

## Symmetric and antisymmetric noise

diagrammatic expansion in renormalized  $J_{
m nd}$ 

 $\rightarrow$  analytic solution of flow equations at weak coupling  $\Lambda_c = \max\{|\Omega|, |V|, |h|\} \gg T_K$ 

$$S^{+}(\Omega) = \frac{\pi}{8} J_{\text{nd}}^{2} M h + \frac{\pi}{8} J_{\text{nd}}^{2} \sum_{\sigma, \eta = \pm} |\Omega + \sigma V + \eta h|_{2} + \frac{\pi}{2} J_{\text{nd}}^{2} \sum_{\sigma = \pm} \left[ M^{2} |\Omega + \sigma V| - \left( M^{2} - \frac{1}{4} \right) |\Omega + \sigma V|_{1} \right]$$

$$S^{-}(\Omega) = \frac{3\pi}{4} J_{\mathrm{nd}}^{2} \Omega + \frac{\pi}{4} J_{\mathrm{nd}}^{2} M \sum_{\sigma, \eta = \pm} \eta |\Omega + \sigma V + \eta h|_{2}$$

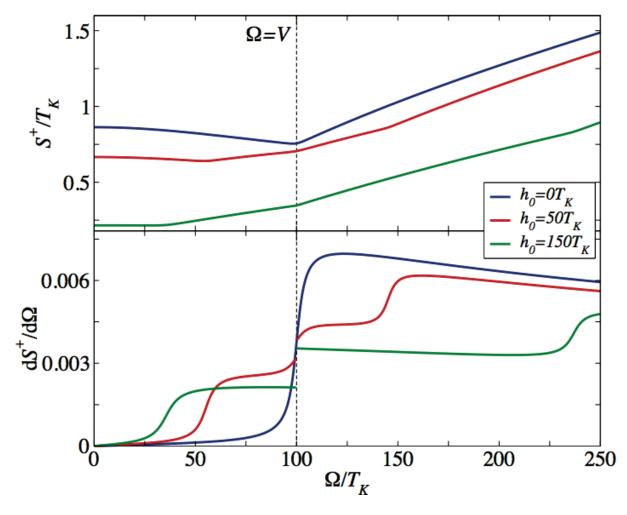
with 
$$|x|_i = \frac{2x}{\pi} \arctan\left(\frac{x}{\Gamma_i}\right)$$

- rates: longitudinal  $\Gamma_1=\pi(J_L^2+J_R^2)h/2+\pi J_{\mathrm{nd}}^2\max\{|V|,|h|\}$  transverse  $\Gamma_2=\pi J_{\mathrm{nd}}^2V/2+\Gamma_1/2$ 
  - → define lineshape at resonances
- new contribution to  $S^+$  not broadened by any decay rate
  - $\rightarrow$  discontinuity in derivative  $V = \pm \Omega$

# Symmetric noise

$$h = 0$$
  $S^{+}(\Omega) = \frac{3}{4} J_{\text{nd}}^{2} \sum_{\sigma = \pm} (\Omega + \sigma V) \arctan\left(\frac{\Omega + \sigma V}{\Gamma}\right)$   $(\Gamma_{1} = \Gamma_{2})$ 

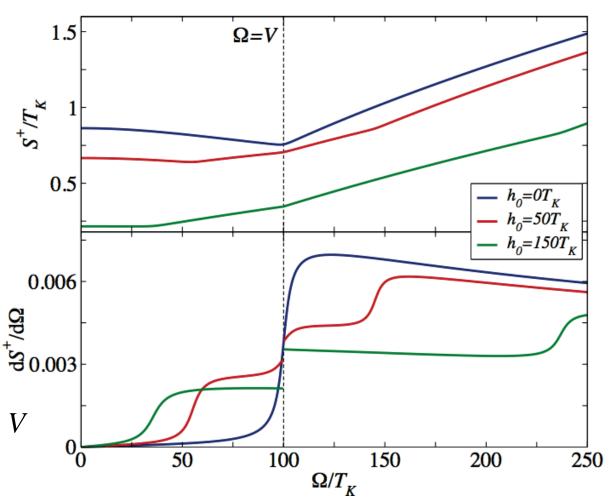
ightarrow characteristic *resonance* in derivative at  $V = \Omega$ 



$$S^{+}(\Omega) = \frac{\pi}{8} J_{\rm nd}^{2} M h + \frac{\pi}{8} J_{\rm nd}^{2} \sum_{\sigma, \eta = \pm} |\Omega + \sigma V + \eta h|_{2} + \frac{\pi}{2} J_{\rm nd}^{2} \sum_{\sigma = \pm} \left[ M^{2} |\Omega + \sigma V| - \left( M^{2} - \frac{1}{4} \right) |\Omega + \sigma V|_{1} \right]$$

h > 0

- ightarrow additional features at  $\Omega = |V \pm h|$  in derivative broadened by  $\Gamma_2$
- ightarrow discontinuity at  $\Omega = V$   $\Delta = \pi J_{
  m nd}^2 M^2$ 
  - superposition with continuous enhancement broadened by  $\Gamma_1$  for h < V
  - no broadening for h > V



reported also in strong-coupling Toulouse limit

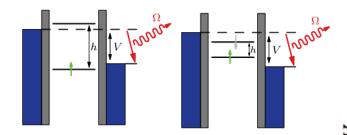
Schiller, Hershfield, PRB (1998)

## **Emission noise**

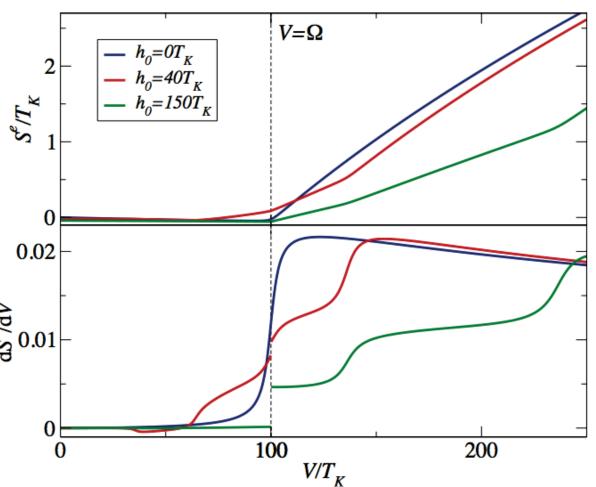
noise induced by photon emission  $S^e(\Omega) = S^+(\Omega) - S^-(\Omega)$ 

$$S^{e}(\Omega) = S^{+}(\Omega) - S^{-}(\Omega)$$

→ same characteristic feature as  $S^+$  with discontinuity at  $\Omega = V$  for finite h

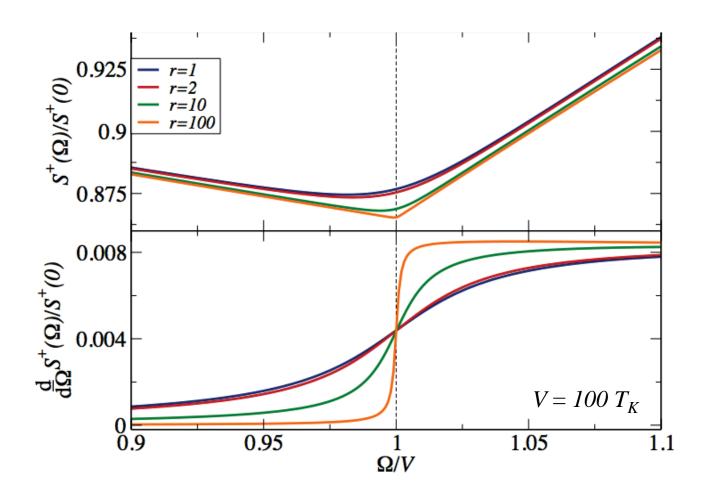


magnetic field introduces additional feature at V = hdue to magnetization



 $\rightarrow V$  - dependence qualitatively similar to  $\Omega$  - dependence

# Asymmetry effects



rescaling of exchange couplings → sharpening of the features

# Comparison to experiment

noise measurement on carbon nanotube quantum dot

$$h = 0$$
 
$$\frac{\mathrm{d}S^e(\Omega)}{\mathrm{d}V} = \frac{3}{4}J_{\mathrm{nd}}^2 \left(\arctan\frac{\Omega + V}{\Gamma} - \arctan\frac{\Omega - V}{\Gamma}\right)$$

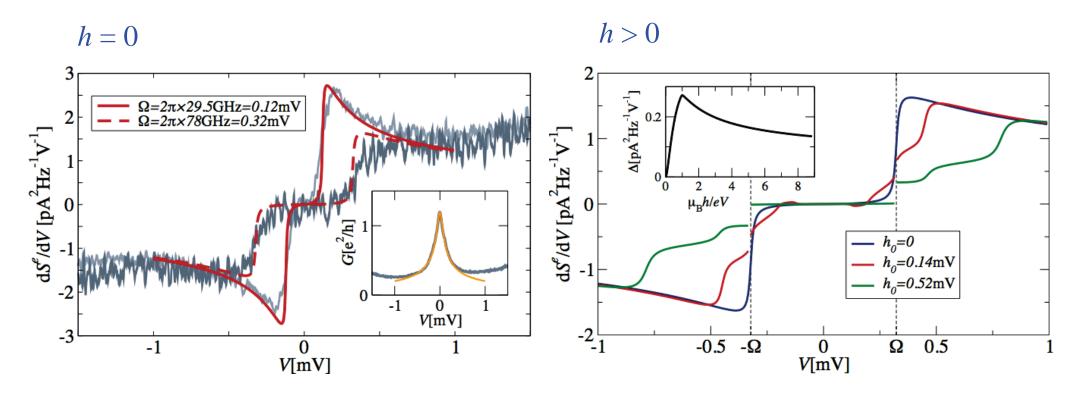
Basset, Kasumov, Moca, Zarand, Simon, Bouchiat, Deblock, PRL (2012)

parameters determined by G(V) in strong-coupling regime asymmetry  $G(V=0)=1.194\frac{e^2}{h}$   $T_K$   $G(V=T_K^*)=\frac{2}{3}G(V=0)$  with  $T_K^*=10.57\,T_K$ 

Pletyukhov, Schoeller, PRL (2012)

- $\rightarrow$  resonances at  $V = \pm \Omega$  broadened by  $\Gamma$
- → consistent description for both frequencies without adjustable parameters

## Prediction for measurement in magnetic field



- $\rightarrow$  additional features at  $V = |\Omega \pm h|$
- ightarrow resonance at  $\Omega=\pm V$  only broadened by temperature and experimental resolution
- $\rightarrow$  discontinuity most pronounced for h = V

## AC conductance

dc bias modulated by small ac voltage  $V(t) = V + \delta V \; e^{-i\Omega t}$ 

generalization of Kubo to non-equilibrium

$$G(\Omega) = \frac{1}{\Omega} \left[ C_{II}^{-}(\Omega) - C_{II}^{-}(0) \right]$$

Safi, Bena, Crepieux, PRB (2008) Kubala, Marquardt, PRB (2010)

#### AC conductance

dc bias modulated by small ac voltage  $V(t) = V + \delta V \; e^{-i\Omega t}$ 

#### analytic results

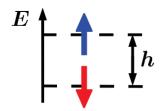
$$\begin{split} \operatorname{Re} G(\Omega) &= \frac{3\pi}{4} J_{\mathrm{nd}}^2 + \frac{\pi M}{4\Omega} J_{\mathrm{nd}}^2 \sum_{\sigma, \eta = \pm} \eta \, |\Omega + \sigma V + \eta h|_2 \\ \operatorname{Im} G(\Omega) &= -\frac{M}{2\Omega} J_{\mathrm{nd}}^2 \sum_{\sigma, \eta = \pm} \eta \, \Big[ \mathcal{L}_2(\Omega + \sigma V + \eta h) - \mathcal{L}_2(\sigma V + \eta h) \Big] \\ \text{with } \mathcal{L}_i(x) &= x \, \ln(\Lambda_c/\sqrt{x^2 + \Gamma_i^2}) \end{split}$$

- logarithmic behavior in Im G characteristic Kondo feature
- no feature at  $\Omega = V$
- in contrast to noise *all* resonances broadened by  $\Gamma_2$
- → conductance contains less information on relaxation processes

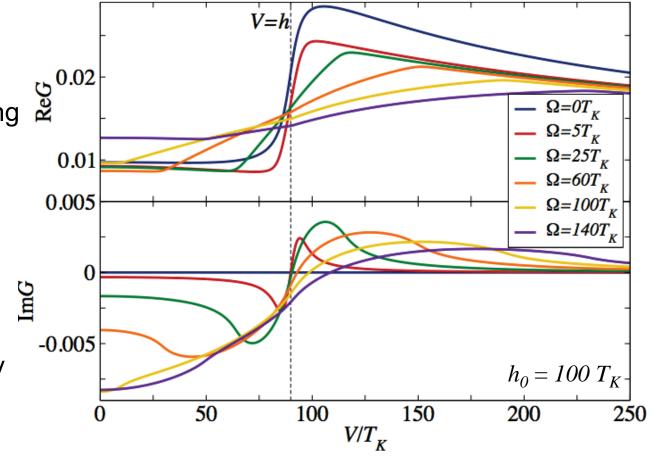
## AC conductance

#### voltage dependence

- for  $\Omega=0$  characteristic resonance at V=h due to inelastic cotunneling



- for  $\Omega>0$  step-like enhancement replaced by continuous increase in range  $V=|h\pm\Omega|$ 



#### Conclusion

#### finite-frequency current noise of non-equilibrium Kondo dot

- → real-time RG in Liouville space provides analytic results
- → novel magnetic field effects
  - characteristic resonances broadened by longitudinal and transverse spin relaxation rates
  - sharp feature at  $\Omega = \pm V$  characterized by absence of any decay rate
- → prediction for *experimental observation* at finite field

Ref.: Müller, Schuricht, Pletyukhov, Andergassen, arXiv:1211.7072

## Thanks to ...

Richard Deblock

Herbert Schoeller

Pascal Simon

Gergely Zarand



FOR723
Functional Renormalization Group for Correlated Fermion Systems