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Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo

quantum dot out of equilibrium
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We present analytic results for the finite-frequency current noise and the nonequilibrium ac con-
ductance for a Kondo quantum dot in presence of a magnetic field. We determine the line shape
close to resonances and show that while all resonances in the ac conductance are broadened by the
transverse spin relaxation rate; the noise at finite field additionally involves the longitudinal rate
as well as sharp kinks resulting in singular derivatives. Our results provide a consistent theoretical
description of recent experimental data [Phys. Rev. Lett. 108, 046802 (2012)] for the emission
noise at zero magnetic field, and we propose the extension to finite field for which we present a
detailed prediction.
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Introduction.—The understanding of quantum many-
body effects and their characteristic signatures in trans-
port properties represents a fundamental topic in meso-
scopic physics. Beside the average current, its fluctua-
tions described by the current noise contain additional
information on the interplay of strong correlations and
quantum fluctuations. In particular, the finite-frequency
noise reveals the characteristic time scales of the system
and provides information about the dynamics of exci-
tations. This triggered numerous experimental works on
the noise in various systems ranging from Josephson junc-
tions to single-electron transistors [1].

It is by now well established that strong correlations
play a crucial role for the transport properties of quan-
tum dots. For example, for quantum dots in the so-called
Kondo regime the transport is dominated by spin fluctu-
ations leading, at sufficiently low energies, to a universal
conductance of G = 2e2/h due to resonant tunneling
processes [2]. Recently it has also become possible to
measure the current noise in such Kondo quantum dots
realized in carbon-nanotube devices [3, 4]. In particu-
lar, Basset et al. [4] measured the finite-frequency emis-
sion noise and observed resonances when the external
frequency equaled the applied bias voltage.

The nonequilibrium finite-frequency noise in quantum
dots has theoretically been studied for the Anderson
model, resonant level models, and spin valve systems [5].
For quantum dots in the Kondo regime previous studies
focused either on the shot noise (zero frequency) [6] or on
the exactly solvable Toulouse limit [7], while the finite-
frequency noise has only very recently started to attract
attention [4, 8]. Of particular interest in this context
is the nontrivial interplay of the different energy scales,
which manifests itself in the appearance of characteristic
resonances whose line shapes contain information about
the underlying microscopic relaxation mechanisms. For
quantum dots in the Kondo regime these are the trans-
verse and longitudinal relaxation of the dot spin, which

are identical at zero magnetic field, but acquire different
values when the rotational symmetry is broken.

In this Letter we provide an analytic analysis of the
finite-frequency current noise and the ac conductance in
the nonequilibrium Kondo model. We particularly focus
on the effects of a finite magnetic field and show that
it leads to (i) characteristic resonances as a function of
the frequency and bias voltage, and (ii) the appearance
of both the longitudinal and transverse spin relaxation
rates in the broadening of these resonances as well as
sharp kinks in the noise. We find excellent agreement
with existing experimental data [4] for the emission noise
at zero magnetic field, and propose the measurement at
finite field for which we present a detailed analysis (see
Fig. 3).

Model.—We consider a Kondo quantum dot consisting
of a spin-1/2 S subject to a local magnetic field h0, which
is coupled to two noninteracting electronic leads via an
isotropic exchange interaction (see inset in Fig. 1),

H = Hres+h0Sz +
1

2

∑

αα′kk′σσ′

Jαα′a†
αkσS ·σσσ′ aα′k′σ′ . (1)

Here a†
αkσ and aαkσ create and annihilate electrons with

momentum k and spin σ = ↑, ↓ in lead α = L, R, and
σ are the Pauli matrices. The leads are described by
Hres =

∑

αkσ εka†
αkσaαkσ , with a flat density of states

in a band of width 2D, and chemical potentials µL/R =
±V/2. The exchange interaction is assumed to be derived
from an Anderson impurity model via the Schrieffer-
Wolff transformation and thus satisfies J2

nd = JLJR,
where Jnd = JRL = JLR and Jα = Jαα. We use the
parametrization JL/R = 2xL/RJ0 with xL +xR = 1. The
system is at zero temperature and we use units such that
e = ~ = kB = 2µB = 1.

The nonequilibrium dc current through Kondo quan-
tum dots has been intensively studied [9–11] in the past.
Here we investigate the zero-temperature fluctuations of
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the current in the stationary state, which are captured by
the symmetric S+(Ω) and antisymmetric S−(Ω) current
noise

S±(Ω) =
1

2

∞
∫

−∞

dt eiΩt〈[I(t) − 〈I〉, I(0) − 〈I〉]±〉, (2)

where I = −ṄL denotes the current operator in the
left lead defined using the corresponding particle number
NL [12]. In equilibrium, S+(Ω) and S−(Ω) are related
by the fluctuation dissipation theorem (FDT), which at
T = 0 reads S−(Ω) = sgn(Ω)S+(Ω). In addition, we
study the nonequilibrium ac conductance G(Ω) exploit-
ing the generalization of the Kubo formula to nonequi-
librium distributions [13].

Method.—We calculate the current noise using the real-
time renormalization group (RTRG) approach [14, 15]
which is based on a derivation of the effective dot Liou-
villian Leff

D (z) depending on a Laplace variable z. Leff
D (z)

governs the time evolution of the reduced density matrix
of the dot ρD(t) = Trresρ(t) obtained by tracing out the
lead degrees of freedom from the full density matrix of
the system. The effective Liouvillian incorporates all in-
formation about the relaxation dynamics of the spin on
the dot encoded in the renormalized magnetic field h and
the longitudinal and transverse spin relaxation rates Γ1

and Γ2.
In general, the noise (2) can be rewritten as

the real part of the auxiliary function C±
II(Ω) =

∫ 0

−∞
dt e−iΩt〈[I(0), I(t)]±〉, which itself can be ex-

pressed [15] as C±
II(Ω) = −iTrD

[

Σ±
II(Ω, i0+)ρst

D

]

−
iTrD

[

ΣI(Ω) 1
Ω−Leff

D
(Ω)

Σ±
I (Ω, i0+)ρst

D

]

. Here ρst
D denotes

the stationary reduced density matrix obtained from
Leff

D (i0+) ρst
D = 0, and the kernels Σ±

II(Ω, i0+), ΣI(Ω) and
Σ±

I (Ω, i0+) obey renormalization-group equations similar
to that of the Liouvillian [16].

The RTRG weak-coupling analysis is based on a sys-
tematic expansion in the renormalized exchange cou-
plings around the poor man’s scaling solution J(Λ) given
by J(Λ) = [2 ln(Λ/TK)]−1. Here Λ denotes the flow pa-
rameter, and the Kondo temperature is defined by TK =
De−1/2J0 . Before Λ reaches TK in the flow from high to
low energy scales, that is in the range Λ ≥ Λc ≫ TK ,
where Λc =

√
Ω2 + V 2 + h2, we can carry out an expan-

sion of the noise in a power series of J(Λc). In doing
so, we are able to identify which resonant features in
the noise get broadened by relaxation rates and which
remain sharp. The latter effect, in particular, happens
in the nonequilibrium setup at finite magnetic field and
Ω = ±V . Technically, this is seen in the RTRG equations
as the influence of the resolvent projection P0

1
Ω−Leff

D
(Ω)

onto the zero eigenvalue subspace of the Liouvillian. This
represents a nontrivial feature of the two-point functions
(2), in contrast to one-point functions which receive no
contribution from the zero eigenvalue subspace [14].
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FIG. 1: (Color online) Upper panel: Symmetric noise S+(Ω)
for V = 100 TK , r = 1, and different magnetic fields. The in-
set shows a sketch of the Kondo dot. Lower panel: Derivative
dS+/dΩ showing a discontinuous jump at Ω = V for finite
magnetic fields (zoom in the inset).

Finite-frequency noise.—We have analytically derived
S±(Ω) up to second order in the poor man’s scaling so-
lution J = J(Λc). In the scaling limit (D → ∞, J0 → 0
at fixed TK) and for Ω ≫ TK they read

S+(Ω) = πJ2
ndMh +

π

8
J2

nd

∑

σ,η=±

|Ω + σV + ηh|2

+
π

2
J2

nd

∑

σ=±

[

M2|Ω + σV | −
(

M2 − 1

4

)

|Ω + σV |1
]

(3a)

S−(Ω) =
3π

4
J2

ndΩ +
π

4
J2

ndM
∑

σ,η=±

η|Ω + σV + ηh|2,

(3b)

where |x|i = (2x/π) arctan(x/Γi) is the absolute value
function smeared on the scale Γi. The longitudinal and
transverse relaxation rates are given by Γ1 = π(J2

L +
J2

R)|h|/2+πJ2
nd max{|V |, |h|} and Γ2 = πJ2

nd|V |/2+Γ1/2
respectively [9]. The dot magnetization is M = −(1 +
r)2h/[2(1 + r2)|h| + 4r max{|V |, |h|}], with the renormal-
ized magnetic field h = (1 − J)h0 and the asymmetry
r = xL/xR. One easily verifies S±(Ω) = ±S±(−Ω). In
equilibrium, these S± also satisfy the FDT.

We stress that the RTRG method provides a consis-
tent derivation of the relaxation rates appearing in (3)
via the smeared absolute value function. In particular,
at Ω = ±V we find a contribution to S+ which is not
broadened by any microscopic decay rate. As shown in
Fig. 1 the sharp kink in S+ leads to a discontinuity in
its derivative with the jump given by ∆ = πJ2

ndM2. We
attribute this behavior to the fact that at large fields,
h > V , the spin on the dot is fixed to its ground state.
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FIG. 2: (Color online) Comparison of Eq. (5) to the experi-
mental data of Ref. [4] for the derivative of the emission noise
dSe/dV at h0 = 0. We stress that Eq. (5) does not contain
any free parameter. Inset: Fit of G(V ) to the theoretical
result [11].

Processes at external frequencies Ω = V probe the charge
transfer between the leads, which are not broadened due
to the sharpness of the Fermi edges at zero tempera-
ture. At smaller fields, 0 < h < V , the spin becomes
dynamical, and virtual processes involving longitudinal
spin fluctuations give an additional, continuous, contri-
bution broadened by Γ1. In turn, processes involving a
spin flip on the dot, which appear at Ω = |V ± h|, are
broadened by Γ2. The latter behavior is also found for all
resonances appearing in the current [9]. Thus the noise
offers a way to study richer relaxation phenomena than
those present in the current. We note that a disconti-
nuity in the derivative of the noise was also found [7] in
the strong-coupling regime of the Kondo model at the
Toulouse point; we therefore expect it to be a generic
feature of the finite-frequency noise in Kondo quantum
dots. On the other hand, S−(Ω) contains only terms
broadened by Γ2. This behavior is reflected in the ac
conductance and will be discussed below.

For Ω ≫ TK the irreducible contribution to C±
II(Ω)

(given by its first term) is dominant, while the reducible
one (the second term) is subleading ∼ O(J4). However,
for Ω ≪ TK the reducible term contributes in order J2

supplementing Eq. (3a) in the limit Ω → 0 by

− π2J4
nd

2Γ1

[

2V M +

(

M2 +
1

4

)

m(V, h)

]

m(V, h), (4)

where m(V, h) = |V + h|2 − |V − h|2. In total, this result
generalizes the nonequilibrium shot noise [6] of a Kondo
quantum dot to the case of finite magnetic fields.

Emission noise.—From the expressions (3) we deter-
mine Se(Ω) = S+(Ω) − S−(Ω) describing the noise in-
duced by photon emission [17]. It obviously inherits the
features of the symmetric noise discussed above, which
can be probed in the measurements of dSe(Ω)/dΩ or
dSe(Ω)/dV .
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FIG. 3: (Color online) Voltage derivative of the emission noise
for the experimental parameters of Ref. [4] with Ω/2π =
78 GHz (blue line). For comparison we show the result for
small (red line) and large (orange line) magnetic fields. For
finite fields we observe discontinuous jumps at V = ±Ω.
The relation between h0 and the applied field is given by
h0 = g∗happ/2 with the material specific effective g-factor g∗.
Inset: Magnetic-field dependence of the jump height.

Let us first consider vanishing magnetic field as in the
recent experiments by Basset et al. [4] on the emission
noise of a carbon nanotube quantum dot in the Kondo
regime. For this case Eq. (3) yields

dSe(Ω)

dV
=

3

4
J2

nd

(

arctan
Ω + V

Γ
− arctan

Ω − V

Γ

)

, (5)

where J2
nd = xL(1 − xL)/ ln2(

√
Ω2 + V 2/TK) and Γ =

Γ1 = Γ2 = πJ2
ndV . We emphasize that Eq. (5) con-

tains only two unknown parameters, namely the Kondo
temperature TK and the asymmetry xL, which are ex-
tracted from the differential conductance (see below).
The previous theoretical analysis of the data in Ref. [4]
used a frequency-dependent renormalization-group anal-
ysis which required, however, the fitting of the line shape
close to the resonances with phenomenological relaxation
rates. Here, in contrast, the rate Γ was derived consis-
tently and does not contain free fit parameters.

In order to determine TK and xL we fit the measured
differential conductance [4] to the theory [11] (see in-
set of Fig. 2). The asymmetry is extracted [18] from
G(V = 0) = 1.194 e2/h and amounts to xL ≈ 0.82 (or
0.18), while the Kondo temperature is obtained from
G(V = T ∗

K) = 2
3 G(V = 0) and T ∗

K = 10.57 TK [19]
and equals TK ≈ 110 mK ≈ 0.01 mV. Using these pa-
rameters we plot Eq. (5) against the experimental re-
sults [4] in Fig. 2. In the range |V | . 1mV we find excel-
lent agreement for both frequencies; for larger voltages
charge fluctuations set in, and the Kondo model (1) is
no longer adequate. For this reason our analysis of the
features at V = ±Ω is limited to Ω . 1mV. On the
other hand, it is restricted by the weak-coupling condi-
tion Ω ≫ TK ≈ 0.01 mV, leaving two orders of magnitude
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in the window of admissible frequencies.
Here we propose to measure the emission noise of a

quantum dot in the Kondo regime at finite magnetic field
(see Fig. 3). As can be easily inferred from Eqs. (3) the
energy scale h has two effects on dSe(Ω)/dV : (i) It intro-
duces additional features V = ±|Ω + h|, V = ±|Ω − h|,
and V = ±h, which originate from the onset of addi-
tional transport processes as well as from the voltage
dependence of the dot magnetization M . (ii) At large
magnetic fields h > Ω the resonances at V = ±Ω turn
into discontinuous jumps. At smaller fields these jumps
are superimposed with a contribution broadened by the
longitudinal spin relaxation rate Γ1, while all other reso-
nances are broadened by the transverse rate Γ2. For illus-
tration we show dSe(Ω)/dV for the parameters of Ref. [4]
but finite magnetic fields in Fig. 3. In experiments the
jumps at V = ±Ω will be broadened by finite tempera-
ture T . This broadening is linear in T , in contrast to the
other resonances which are broadened by Γ2 +O(T ). For
this reason the features at V = ±Ω stay much sharper
than all other ones as long as T ≪ Γ2 ∼ TK .

AC conductance.—Finally we discuss the nonequilib-
rium ac conductance. We consider a setup [20] at fi-
nite dc bias V modulated by a small ac voltage δV ,
V (t) = V + δV e−iΩt. This induces a frequency-
dependent current I(V, δV, Ω) from which the nonequi-
librium ac conductance can be extracted via G(Ω) =
limδV →0

1
δV [I(V, δV, Ω) − I(V )] with I(V ) denoting the

stationary dc current. We stress that G(Ω) is the ac
conductance in a nonequilibrium stationary state, i.e. in
the presence of the finite dc bias V . By generalizing the
Kubo formula to nonequilibrium distributions, G(Ω) can
be related [13] to the auxiliary function C−

II(Ω) intro-
duced above via

G(Ω) =
1

Ω

[

C−
II(Ω) − C−

II(0)
]

. (6)

Hence we find Re G(Ω) = S−(Ω)/Ω and

Im G(Ω) = − M

2Ω
J2

nd

∑

σ,η=±

η
[

L2(Ω + σV + ηh)

− L2(σV + ηh)
]

,

(7)

where L2(x) = x ln(Λc/
√

x2 + Γ2
2). One can check that

Re G(Ω) = Re G(−Ω) and Im G(Ω) = −Im G(−Ω) obey
the Kramers-Kronig relations. Similarly to S+(Ω), for
small frequencies G(Ω) is supplemented by the contribu-
tion π

2 J2
ndm(V, h) (∂M/∂V ) for V > h, where ∂M/∂V =

−MΓ−1
1 (∂Γ1/∂V ), originating from the reducible part

of C−
II(Ω). Thus in the limit Ω → 0 one recovers the

nonequilibrium dc conductance [9], while for V → 0 one
obtains the equilibrium ac conductance [21]. We note
that in contrast to the symmetric noise no feature oc-
curs at Ω = V . Moreover, all resonances are broadened
by the transverse rate Γ2, thus the finite-frequency noise
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FIG. 4: (Color online) Nonequilibrium ac conductance G(Ω)
[22] for h0 = 100 TK , r = 1, and different frequencies Ω.

contains more information on the relaxation processes
than the conductance.

In Fig. 4 we plot the voltage dependence of G(Ω) at
fixed frequency. The real part exhibits a characteristic
enhancement at V = h due to the onset of inelastic co-
tunneling processes. For finite frequencies this step-like
enhancement is replaced by a continuous increase in the
range V = |h±Ω| with reduced height. The slight change
in the slope at V = h is due to the voltage dependence
of the dot magnetization. The dependence of G(Ω) as
a function of the frequency shows a qualitatively similar
behavior with features at Ω = |V ± h|.

Conclusion.—We have studied the effects of a finite
magnetic field on the finite-frequency current noise and
nonequilibrium ac conductance of a Kondo quantum dot.
Due to the interplay of the different energy scales both
observables exhibit various resonances, close to which the
lineshapes are governed by self-consistently derived decay
rates. In particular, at finite magnetic field the noise pos-
sesses a sharp feature at Ω = ±V which is not broadened
by any microscopic decay rate. We propose to measure
the emission noise of a Kondo quantum dot at finite mag-
netic field, for which we have derived the full line shape
including the characteristic resonances and a discontinu-
ous jump in its derivative.
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