X-Ray imaging for Earth & Planetary Sciences

Pr. Alexandre Simionovici ISTerre, Observatory of Sciences of the Universe of Grenoble alexandre.simionovici@ujf-grenoble.fr

WHY ? Nature is heterogeneous

Scale: l.y., psec, km, m, mm μ m, nm

Nondistructive analysis:

- composition by quantification methods challenging
- structure/morphology
- local chemistry

Access to:

- initial material (interstellar)
- Solar system **re-processed** thermodynamics

Group work on similar samples needs:

- common strategy (methods, standards, databases)
- round-robin tests to evaluate accuracy

UJF: Masters « Terre, Univers et Environnement » The « sample » community

crustal samples - feldspars, silicates

★ in situ: HP (< 300 Mb), HT < 4000°, bio, paleo</p>

* geo-material sciences: physico-chemical properties

hydrology: hydrated minerals; porosity; permeability

★ atmospheric: aerosols, ultra trace elements

soil/river pollution; radioactive/chemical/biological

* planetary/interstellar return missions

EPS samples are complex... EPS: sample is everything

Unique, fragile, challenging samples

nondestructive, non-invasive analysis

- ★ sample environment: *in situ*, HP, HT, bio
- hyperspectral analysis: 2-3 simultaneous analyses
- multiscale: sample heterogeneity

In situ

MSR

STARDUST aerogel keystones

Diamond Anvil Cell

Missions with Sample Return:

Mars > 2022

Example of quantification

 $E_0=18 \text{ keV}$

 $C_{Fe} = C_{Se} = C_{Sr} \quad \blacksquare \blacksquare$ Effect of Z, (E₀-E_K), ρ, A, ε, μ Relative intensities strongly **changed**

Accurate quantification by Monte-Carlo Collaboration L. Vincze, Univ. of Ghent

Fluorescence cross-sections σ

Uncertainties in the tabulated fluorescence cross-sections for the K_{α} and L_{α} lines

M.O. Krause *et al.*, ORNL-5399

TOOS

X-ray database: XRAYLIB

multi-OS/multi-language
fluorescence/absorption
Compton/Rayleigh (pol / non-pol)
form-factor, scattering function
transition/edge energies

http://ftp.esrf.fr/pub/scisoft/xraylib/

Brunetti, Sanchez del Rio, Golosio, Simionovici, Somogyi Spect. Acta B 59, 1725-1731, 2004

TOOS

PyMCA , hyperspectral XRF+XRD, Spectrum fitting & quantification

ESRF BLISS group: Armando Sole

http://pymca.sourceforge.net/download.html

Soon XRF+Raman XRF+IR XRF+Xanes F-CT

XRF+XRD

2D Imaging

e--beam mapping

✓ resolution ~ μm
 ✓ local concentrations > 1‰

How to map thicker samples Solution : fluorescence tomography

✓ polar scan z et θ
 ✓ long acquisition
 ✓ reconstruction : inverse problem

Simionovici et al., IEEE Trans. Nucl. Sci., 47, 2736-2740 (2000) SPIE 3772, 304 (1999) SPIE 5535, 232 (2004)

Elemental correlations

Correlated S & Sb

Uncorrelated Pb & Sb

Multivariate analysis: PCA

NASA Stardust cometary keystones

Fragmentation = f (Z, ρ_Z , ρ_{aer})

S

Cu

Fe

Heterogeneity of Terminal Particle

Resolution $1 \times 1 \ \mu m^2$

Fe/Ni ≈ 21.5 !!! Fe/Ni $\approx 2 - 200$

Spatial sampling: resolution effect

Hotspot mapping Few pixels: - miss signal

Low res single point

 $1 \text{ pix} = L_{\text{sample}}$ Fast but large error

Fe - thresholding element

Spatial sampling: resolution effect

Resolution

- ✓ beamspot mm/µm/nm
- \checkmark scanning step oversampling $\leq 30\%$
- ✓ mis-interpretations/mis-quantifications

 $1 \times 1 \ \mu m^2$

200 x 150 nm²

Bleuet, Simionovici et al., App. Phys. Lett. **92**, 213111-1–3, 2008

Aerogel composition

AEROGEL sampling

aerogel

"dirty", heterogeneous, insulating medium

Aerogel sampling

- correlated by Si fluorescence
- longitudinal/radial density profiles gradient (30 %)
- no density variation for track vs aerogel

ISPE: Preliminary Analysis of Interstellar Grains

search for Interstellar grains
nano-imaging (XRF, XRD, XCT)
+ XAS ?

search grains < 1 μm
113000 "hunters"
redundant reliability control

virtual microscope

ISPE Treasure Hunt in process

orders of magnitude more challenging than the cometary samples. 1000 times smaller in mass, 1% of the statistics

- "Look, but don't touch" NEW policy?
- intact trajectory ?
 - IS/IP impactors

- total mass distribution
 - xtal ? ExTerr bio-organisms ???

2 μm diameter track Identified by >300 Stardust@home "dusters"

ISPE: Beginning of a long story

Work on FISC

Non – (little) destructive (CH₂/CH₃ contamination check by SR-FTIR)

1027,1,9 (First interstellar candidate)

Si/Fe = 3661 ± 239 Ca/Fe = 8.6 ± 1.0 Zn/Fe = 6.5 ± 0.4

Synchrotron: Wish list

To do

- \checkmark beam stability $\leq 1/4$ beamspot = f(**t**, **E**)
- ✓ XRF, XCT, XRD = OK but no n-Xanes yet
- ✓ larger E range ($7 \le E \le 52$ keV)
- ✓ beamspot \leq 50 nm

To look into

- ✓ beam damage assessment (FTIR, AFM, repeats)
- ✓ mapping point & click contours
- n-goniometers (sphere of confusion = beamspot)
- ✓ hyperspectral treatment: XRF+XRD+Raman/IR (PyMCA)