

Actinides in ceramics for NWS: Combining experiments and Modeling to understand the local structural behavior

Messaoud Harfouche

Outline

Introduction and generalities

radioactivity, metamict state and analogue minerals

Structure of analogue minerals collection and characterization of samples

Methods used for these studies

experimental (XAS) and Theoretical (MD)

XAS and MD Results

Zircon, Titanite, zirconolite and Monazite

Conclusions

Introduction and generalities

What is the goal?

Confinement matrix for HALL nuclear waste

Radioactivity and radiation damage

Tadiations α , β et γ

Phase transition (crystalline \Rightarrow amorphous)

So called metamict minerals

Analogue minerals

Selection & characterization of samples

Zircon, Titanite Zirconolite and Monazite

Introduction

Over geological period of times (10⁹ years), actinide bearing accessory minerals can become amorphous to x-ray.

Amorphous = Metamict

Metamict minerals are natural minerals that have undergone sever radiation damage as a result of α-decay of the U and Th replacing major cations (Zr, Ca, REE ...) in the original structure.

Introduction

Zircon (ZrSiO₄), Monazite .. (~ CePO₄) Zirconolite (CaZrTiO₇) Titanite (CaTiSiO₅)

Considered as: natural analogues of ceramics for nuclear waste forms (Weber, 1990).

Several samples were selected to show highly damaged structures.

□ Samples were characterized using

- Electronic microprobe
- > XRD analysis.
- > TEM

Introduction

Two methods were used to investigate the behavior of natural analogues:

- X-ray Absorption Spectroscopy (XAS) → Synchrotron
 XANES and EXAFS
- 2. Molecular Dynamics Simulation (MD) \rightarrow HPC system

Investigates:

Major elements (Zr, P, Si) to validate the metamict structure(s) obtained by MD

Substituted actinides (Th and U) to understand the influence of radiation damage

Why using natural analogues ?

Ceramics

➢ High activity

- Medium period (1000 y)
- Need special environment
- Risk of contamination
- Red experiment

Analogues

- \succ Low activity
- Long period (billion y)
- Easy to handle
- > No risk of contamination
- Green experiment

How radiation affects the structure?

Samples Collection

Zircon

Name	Origin	Color	Age [10 ⁹ years]	Dose α [10 ¹⁶ α/mg]
Mud Tank	Australia	Marron	*	*
Naegy	Japan	Vert - Gris	0,125	2,0ª
Ampagabe	Madagascar	Marron	0,5 - 1,65	3,0ª
Hittero	Norway	Blanc	0,9-1,64	2,0ª
Kinkel's Quary	USA	Marron – Noir	0,3-0,35	6,0ª
Diamantina	Brazil	Marron		
Ural	Sri-Lanka ^b	Vert-Marron	0,32-0,42	0,2ª
200-300	Sri-Lanka	Vert	0,32-0,42	1,3
250-350	Sri-Lanka	Vert	0,32-0,42	2,2
300-700	Sri-Lanka	Vert	0,32-0,42	1,5
Beers Kimberly	South Africa	Marron-Gris	*	*
Marasoly	Madagascar	Noir-Marron	0,5-1,65	2,0
Turvallah	KSA	Marron-Noir	*	*
Tété	Mozambique	Marron-Gris	0,5-0,6	0,6

^a (Farges et al. 1991).

Samples Collection

Monazite

Name	Origin	Color	Age [10 ⁹ years]	Dose a [10 ¹⁶ a/mg]
FG	Madagascar	*	0,45-0,60	0,6
Governador	Brazil	Vert-Marron	0,45-0,52	0,5
Herfoss	Norway	Marron	1,0-1,02	0,9
Madiaombé	Madagascar	Marron	0,65-0,80	0,31
Marijao	Madagascar	Gris-Marron-	0,35-0,45	0,35
		Vert		
MOAC	Brazil	*	0,41-0,49	0,4

Sources: J-M Montel (Univ. Toulouse), J-M Le Cleac'h, Ecole Nat. Sup. Mines (Paris).

Samples Collection

Titanite & Zirconolite

Nom	Origine	Color	Age [10 ⁹ years]	Dose α [10 ¹⁶ α/mg]
<u>Titanite</u>				
Bevia	Madagascar	Gris-Blanc	0,50 - 1,00	0,2
Localité inconnue	Madagascar	Vert-Marron	0,50 - 1,00	0,2
Ontario	Canada	Marron	2,60 - 2,67	0,1
Capilinha	Brazil	Vert	2,68-2,74	0,1
Zirconolite				
Palabora	South Africa	Noir	0,18-0,23	0,8
Localité inconnue	Sri-Lanka	Marron	0,32-0,42	0,9

Geological Age and Dose

- t: Geological age
 T: Half life time of the isotope
 ND: Number of dissociated atoms
 N: Number of non-dissociated atoms
- **N:** Number of non dissociated atoms

DOSE:

$$D = 8N_{238} e^{t/\tau_{238} - 1} + 6N_{232} e^{t/\tau_{232} - 1}$$

- **D** : Received dose by the sample
- t: Geological age

 t_{238} et t_{232} :Half-life time of 238 U and 232 Threspectively N_{238} et N_{232} :Number of atoms per mg of 238 U et 232 Th

Minerals investigated and

their structures

Zircon

Dodecahedron (ZrOs) $(I 4_1/a m d)$ **Tetrahedron**

Zircon (ZrSiO₄)

Monazite

Structure: Monoclinic

 P_{2_1}/n

Titanite

Structure: Monoclinic

Titanite (CaTiSiO₅)

Structure: Monoclinic

Zirconolite (CaZrTi₂O₇)

Samples Characterization

Sample characterization XRD

Counts

structure

Metamict Zircons Amorphous to x-rays

Crystalline & Semi-crystalline

Sample characterization XRD

Monazite

\checkmark A shift to smaller 20

✓ B newly formed

Sample characterization **XRD**

<u>Crystalline</u>

- Sharp Peaks
- High Intensity

Metamict

- > Wide Peaks
- Low Intensity

Sample characterization HRTEM

HRTEM micrographs of self-radiation damage in natural Zircons showing increased degree of amorphization with

increasing dose [Weber et al. (1994) Journal of Material Research, Vol. 9, Fig. 2, p. 690]

Techniques of Analyses

X-ray Absorption Fine Spectroscopy XAFS

X-ray Absorption Fine Spectroscopy XAFS

Extend X-ray Absorption Fine Structure EXAFS

XAFS Data Processing and Analysis

Molecular Dynamic Simulation (MD)

☐ Modeling of zircon structure:

J-P Crocombette, CEA, France

 ※ 1 atom Zr => U ※ 1000 Zr => U ※ 3000 Zr => U 	J < 0.01 % J 4 % J 12 %	 CN, Polymerization, BV Simulation : *ab-initio XAFS Calculation
	Casca	ades:

4 et 5 keV

Molecular Dynamic Simulation (MD)

Simulating the effect of 12 keV cascade on pure crystalline zircon structure

Validating

DM models

Validation of the MD models

Solution BMH empirical potential over-estimate U-O interatomic distances, so ΣBV is under-estimated ($\Sigma BV = |Z|$).

For Zr and O the zircon MD model (1000 U atoms) is quit good.

Validation of the MD models (Crystalline)

EXAFS over ~23 000 Zr clusters - MD - (FEFF7 : Rehr et al., 1999)

- Use the coordinates of atoms in the MD (xi, yi,zi)
- Caluculate the interatomic distaces from the absorber atom
- Generate the feff.inp file for each absorbing atom (23000 Zr = 23000 feff.inp file)
- Make the average of all feff calculation (chi)

Very good Agreement between simulation and experimental results

Validates the protocol followed - MD + FEFF -

Validation of the MD models (Irradiated)

Validation of the MD models (Irradiated)

Si in zircon

Most of polymerized SiO_n polyhedrons have 1 or 2 bridging oxygens.

MD simulation of radiation damage shows a few SiO_n polyhedrons sharing 3 or 4 bridging oxygens.

Zr in zircon

XANES at Zr L_{III} edge
sensitive to short range order
^[8]Zr (crystalline)
^[7]Zr (metamict)
coherent with Zr K edge (Farges, 1999)

- Stong structural reorganisation of Si (Farges, 1994)
- > Observed by RMN/IR

(Farnan, 1999; Zhang et al., 2000)

Data SA32 Super-Aco, LURE

Zr in zircon

Using amplitude and phase-shift from MD to fit exp. data

Short (A) and medium (B et C) range order around Zr

U in zircon (Exp.)

^[8]U-O = 2.38 Å (oxygen 1st neighbors)
crystalline : expansion of the local structure around U
Zr appears as next neighbors → U is in zircon structure

U in zircon (MD)

Diagram of the atom distribution (Backward RDF)

U in Zircon Structure
Local Expansion around U
High Structural Disorder

CN = 8 (2.4 and 2.51 Å) Si short distance (3.27 Å) Si & Zr next neighbors

Metamict

Th in zircon

At high k values, Th-site in zircon is different to that for ThSiO₄
 Th is not as in a Thorite-like structure, but it replaces Zr in zircon

Th in zircon

Interatomic average distances permit calculating average angles Th-O-Zr and Th-Si-Zr

Th in zircon

• In both crystalline and metamict zircon, Th is 8 fold-coordinated

The local structure around Th in metamict zircon is very complex

Summerizing

- □ In crystalline phases, cations tend to prefer their stable coordination environment (even if redox is different).
- The medium range structure around actinides in crystalline zircon shows:
 - ➤ an expanded region due to the insertion of larger actinides (up to 4 Å),
 - a compressed region between 4 and 5.5 Å,
 - ➢ the structure is back to the original crystalline zircon one above5.5 Å.
- Also, observed in natural metamict zircon and confirmed by MD.
- □ In metamict zircon, an average number of 7 atoms form
- □ The coordination polyhedron around Zr and U.

Illustation Combining :

- 1. Experimental EXAFS data Analysis
- 2. <u>MD</u> simulation results

P in Monazite

Resonance B disappears when the PO₄ tetrahedrons are polymerized

In metamict monazite, the local structure around P is distorted

Th in Monazite

The local structure around Th is complex in both crystalline and metamict monazite

□ Crystalline monazite ≈ Metamict monazite

Unlike zircon, no expansion of the local structure around Th is observed and neither contraction

Th in Zirconolite

Th substitutes to Ca site in Zirconolite structure

- □ Medium and long range order is complex
- □ Like Zircon, it needs MD simulation to understand the local disorder (not available).

U in Zirconolite U substitutes to Ca site in Zirconolite structure

U keeps an 8 fold coordination average U-O = 2.41Å.

Knowing that: Ca-O = 2.52 Å

a contraction of the local structure occurs

Th in Titanite

Th substitutes to Ca site in Titanite structure

Contraction Zone around Th in Titanite and zirconolite

□ Contraction even the equal ionic radius ????
R_{Th4+} (1.0 Å) ≈ R_{Ca²⁺} (0.99 Å)

Electrostatic equilibrium even that Th is 4+ or Ca is 2+????

Discussion

Electrostatic equilibrium & Contraction Zone In Zirconolite and Titanite

***** Ectrostatic equilibrium impose:

Substitution of P³⁺, Al³⁺, Fe^{2+,3+}, etc. to Si⁴⁺ et Ti⁴⁺ sites

*****Local contraction around Th an U is due to:

R substitut
R substituted in expansion around P, Al, Fe...

contraction around Th/U

Conclusion

- □ In crystalline phases, cations tend to prefer their stable coordination environment (even if redox is different)
- The medium range structure around actinides in crystalline zircon shows:
 - **1** expanded region due to the insertion of larger actinides (up to 4 Å),
 - **2** compressed region between 4 and 5.5 Å,
 - **3** the structure is back to the original crystalline zircon one above 5.5 Å.
- Observed also in natural metamict minerals and confirmed by MD
- In metamict zircon, an average number of 7 atoms form the coordination polyhedron around Zr and U.
- Inner (expanded) and outer (compressed) regions form a point defect, which reproduced a billions of times forms an aperiodic structure.

Conclusion

In contrast to zircon, the structural changes around Th are globally much less in monazite.

In metamict phase, polymerization of PO_n tetrahedrons (in monazite) and SiO_n (in zircon) occurs.

 A compressed region is observed around actinides in Zirconolite and Titanite due to insertion of actinides less or equal to the replaced atom (Ca).

□ In some minerals, actinides do not replace major cations, but they are present as an actinide oxide-type (ThO₂, UO₂).

MD simulation is helpful to understand the radiation damage effects on the crystalline zircon structure and results are in agreement with the experiment.

We need MD simulation to better understand the metamict phase in monazite complex structure.

helps also to better understand effects of disorder in EXAFS spectra

Nuclear Energy and Safety Department

Laboratory for Waste Management

U uptake by co-precipitation and adsorption processes in cementitious systems

Messaoud Harfouche

Eric Wieland Marica Vespa Rainer Daehn Jan Tits Andre Scheidegger Laboratory for Waste Management, Paul Scherrer Institut- 5232 Villigen, Switzerland

Central Research Institute of Electric Power Industry, Japan

T. FuJita

Outline

experimental (XAS)

Nuclear Waste Management

Cement in the Swiss radioactive waste management program is used as waste matrix for the disposal of: Long-lived Intermediate-level Waste

Waste package (cement & steel)

waste

Deep geological repository

Container (concrete, mortar, steel)

U(VI) in cementitious systems

U(VI): adsorption process

U(VI): precipitation process

Conclusion U(VI) in cementitious systems

- Uranium linked to C-S-H structure and under-saturated H-C-P via the Si atom
- Sharing the SiO_4 tetrahedron edge
- In CSH, U is present as uranophane- like

□ In over-sat. HCP, U precipitates in Ca-uranate-like form

□ Neither Na-, K-uranate structures were observed

