



# XRD analysis for ground Nanocrystalline-Defectedmaterials

By: Mahmoud Abdellatief Civil-Mechanical and Environmental engineering Department Trento University MCX beamline, ELETTRA, Trieste



# Structural Defects in Nanotechnology ??



#### **Ideal Crystal Structure**

#### Real crystal structure "Deviation from ideality"

Generally, real crystal structure have defects ?!!

# G = E - T S + P V (Gibbs free energy)

- E: Crystal internal
- energy
- T: Temperature
- S: Entropy
- P: Pressure
- V: Volume

Natural system likes to stay with less energy (i.e. within a certain rang increasing S decreases G)

# Structural defects classes ?

# **Point Defects**

# (e.g. Vacancy, Frenkel, Schottky, Interstitial)



# Structural defects classes ?

# Line Defects (e.g. Edge, Screw)



Structural defects classes ? **Two Dimensions Defects** (e.g. Grain boundaries, Twinning)





"Ionic transport and diffusion based applications strongly sensitive to structural defects"

- 1. Solid electrodes/electrolytes (Batteries)
- 2. Crystal growth stability
- 3. Hydrogen diffusion (hydrogen storage applications)
- 4. Catalysts

etc....







Production of nanocrystalline structurally defected crystals ??

Powder Production by **Ball milling** Technique (*top-down route*)

# **Milling Parameters**

- 1. Milling machine
- 2. Speed of rotation
- 3. Vial and balls materials

Optimization

un‼

- 4. Vial's shape
- 5. Milling time
- 6. Ball to powder weight ratio
- 7. Powder mechanical and thermal properties
- 8. Lubricant
- 9. Pause time Vs. grinding time
- 10 Milling atmosphere



Main structural parameters characteristics from ball milling





## **Characterization Techniques**

## **TEM** (Quantitative analysis of dislocation)

- Resolution
- No. of Images
- high dislocation density ρ is limited





# **INFORMATION FROM DIFFRACTION PATTERN**



**XRD-LPA Approach for structural analysis** 

- Effective at high p
- Inhomogeneity insensitive (Long rang order technique)



#### Common methods of XRD-LPA Rietveld/ Whole Powder Pattern Fitting (WPPF)

# **WPPF Strategy**



 $C(L) = A^{IP}(L) \cdot A^{s}(L) \cdot A^{D}(L)$ 



# Direct contact of experimental pattern via physical structural model without any structural constrains

# **XRD-LPA-WPPM** for ball milled Fluorite CaF<sub>2</sub>

# Experimenta

# Milling

- Steel Vials and balls
- Milling time (4, 8, 16, 32, 64) hours
- Speed 400 rpm Main WPPM Structural

### Fixed

contributions

Instrumental

# Refined

- Size by lognormal distribution (mu, sigma)
- Dislocations model (Edge/Screw) and ratio
  - the second s



## Several ground fractions at short milling times



# Possible solution to get the full structural picture



# Simultaneous XRD/WPPM-NMR/T1 analysis (PM2K program)

Pristine CaF<sub>2</sub>:  $T_1 = 54 \text{ s}$ )





$$M_{z}(\tau) = C \Big[ 1 - \exp(-\tau/T_{1A}) \Big] + (1 - C) \Big[ 1 - \exp(-\tau/T_{1B}) \Big]$$

Simultaneous XRD/WPPM-NMR/T1 analysis (PM2K program)

Samples: (4, 8, 16 h )Two-phase Model

 $C \propto less defected (larger crystallite) fraction (A, long T<sub>1</sub>)$  $(1-C) <math>\propto$  highly defected (smaller crystallite) fraction (B, short T<sub>1</sub>)



# Simultaneous XRD/WPPM-NMR/T1 analysis (PM2K program)



#### **Size evolution**







#### Homogenous defected powder

- Very small T1 (less than unity)
- Saturated <D>



#### **Next question**

Lattice Strain/Crystallite size with T1 correlation??



#### **Grinding environment contribution**



T1 is less in case of Fe grinding environment due to the magnetic contamination

T1@32h ---> 0.79 sec @WC, 0.038 sec @Fe T1@64h ---> 0.31 sec @WC, 0.036 sec @Fe

### **Ground series**

Samples Pristine, 16h, 32h, 64h

$$M_{z}(\tau) = K + C \left[1 - \exp\left(-\tau/T_{1}\right)\right]$$





#### 4h, 8h samples with combined XRD/NMR



#### Main ground series results



**Chemically synthesized series** 

• Samples 0%, 30% and 60 %



- Mono exponential T1 trend
- Bi XRD models gives less WSS(more agree with TEM images)

Although two size fraction

T1 does not split

T1 less than pristine (around 7 sec) but does not change T1 (Pristine) = 54 sec



| Ethanol content | $T_1$  |
|-----------------|--------|
| [%]             | [s]    |
| 0               | 5.1(1) |
| 30              | 8.1(3) |
| 60              | 4.9(3) |



Two size distributions (lognormal) for CaF2@30% and CaF2@60% samples







- 2. Lattice strain leads to a decrease in T1 less than unity and crystallite size influence only when it is less than 10 nm coupled worth a strain lattice
- **3.** Further investigation is required to understand the real mechanism of T1/lattice strain correlation

## Furnace for In-Situ XRD experiments at MCX beamline

### Applications: High temperature application



Main advantages:

Fast pattern collections coupled with large no. of patterns



## **Oven main elements and construction**





# Instrumental contribution of the furnace at MCX beamline



### Oven temperature calibration from lattice parameter

#### Need very carful care of Pixel-2theta conversion



Sample - detector distance

Then from lattice parameter/temperature dependence will known equation for Si standard → Temperature can be obtained

# Well matches between PID set temperature and sample temperature



#### Characterizations of temperature uniformity within the cylindrical ovens



# In-Situ XRD Study of Lattice Defects Influence on Grain Growth Kinetics of Nanocrystalline Fluorite

#### Ostwald Ripening (OR), Oriented Attachment (OA) growth

small grains rotate until they **methanis** common crystallographic axis between each two neighbors in order to decrease the (surface) grain boundary free energy

![](_page_48_Figure_3.jpeg)

Aim

Free surface crystals (chemically synthesized) Vs. aggregated crystals with energy stored in the grain boundaries (ball milled)

![](_page_49_Figure_2.jpeg)

Stability, recovery and crystallization

![](_page_50_Figure_0.jpeg)

# **Remarks III**

 Stored energy in the grain boundaries responsible for fast growth around 500 C.
 Free surface crystals (chemically synthesized) more thermally stable

# **In-Situ XRD Study of Hydrogen Storage Materials**

![](_page_52_Figure_1.jpeg)

#### Energy system requirements

Available, Clean, Flexible, Cost efficient,...

Hydrogen fuel cell (promising candidate)

![](_page_53_Figure_1.jpeg)

### Hydrogen Storage problem

![](_page_53_Figure_3.jpeg)

**Overall**:  $H_2 + \frac{1}{2} O_2 \rightarrow H_2O$ 

### Hydrogen storage materials

Main requirements:

- H2 Capacity (> 6 or 9 %)
- Low thermodynamic stability (Td < 150 C)</li>
- High H kinetics for sorption (around 5 min. refilling time)
- High stability against moisture (>500 cycles)
- Low cost

![](_page_54_Figure_7.jpeg)

![](_page_54_Figure_8.jpeg)

Structural and catalysis keys

# Two capillaries system for gas controlled in-situ XRD experiments

![](_page_55_Figure_1.jpeg)

![](_page_55_Picture_2.jpeg)

- Some reactions occur only under special environment ...
  - Or Oxygen sensitive samples (inert gases needed)

Improvements by:

- Using catalysis
- Increases structural defects by milling

![](_page_56_Figure_3.jpeg)

![](_page_56_Figure_4.jpeg)

![](_page_56_Figure_5.jpeg)

# Conclusions

- Simultaneously combining local/long rang order techniques is appreciated
- Lattice absorb energy faster (T1) in the presence structural defects (diffusion improves)
- Defects are much effective on T1 than size unless very small size >7 nm
- Well characterized furnace at MCX beamline for In-situ XRD experiments
- Grain growth is enhanced by dislocations
- Hydrogen desorption of MgH2 by structural defects and catalysis (SnO2)
- In-Situ XRD is powerful tool to investigate structural evolution for Hydrogen storage materials

![](_page_58_Picture_0.jpeg)