# The Scientific Program of **SESAME**

Hafeez R. Hoorani Scientific Director, SESAME

# Layout

- Introduction and Overview
- SESAME Beamlines
- Training Opportunities

# **Radiation Sources**

 $mc^2$ 

#### **Bending magnets**

• Radiation emitted tangentially to the orbit

• Dipole magnet is used as bend magnet

 $\varepsilon_c$ [keV] = 0.665 $E^2$ [GeV<sup>2</sup>]B[T]

 $\gamma E$ 

• For SESAME *E* = 2.5 *GeV*, *B* = 1.455 *T* 

 $\varepsilon_c = 5.73 \text{ keV}$ 

#### **Insertion devices**

- Multipole Wigglers
- Undulators

Ultra relativistic electrons can be deviated by the constant magnetic field of bending magnets in which their trajectory is an arc of circle



They emit photons in a direction tangent to their trajectory **This is synchrotron radiation** 

Such conditions are met in <u>electron storage rings</u>

# **Radiation Sources**

A parameter of prime importance in experiments with **synchrotron radiation** sources is the spectral **brilliance** (brightness) defined as

$$B = \frac{dN_{ph}}{dA \, d\Omega \, dt \, d\lambda / \lambda}$$

 $\frac{photons \ per \ sec \ ond}{mm^2 mrad^2 0.1\% b.w}$ 

Apart from diffraction effects, we have :

$$dA \, d\Omega \approx \varepsilon_x \varepsilon_z$$

High brilliance of PHOTON BEAM ⇒ Low emittance of ELECTRON BEAM



- Insertion devices are inserted in the straight section
- Oscillating magnetic field causes wiggling trajectory
- Period Length  $\lambda_u = 15 400 \text{ mm}$ , Magnetic gap = 5 40 mm
- Flux from a wiggler = 2N x Flux<sub>dipole</sub> Continuous spectrum
- Flux from an undulator =  $N^2 \times Flux_{dipole}$  Discrete spectrum

# **Insertion Devices**

• Generally K-factor is used to distinguished between wiggler and undulator:

$$K = \frac{q\lambda B}{2\pi\beta mc}$$

- Wigglers (K >> 1)
  - Radiation spectrum is broad
- Undulators (K < 1)
  - Radiation spectrum is narrow
  - Intensity of radiation varies as N<sup>2</sup> where N is number of poles



#### **SESAME - STORAGE RING Main Parameters**

| Parameter                      | Unit     | Value            |
|--------------------------------|----------|------------------|
| Energy                         | GeV      | 2.5              |
| Circumference                  | m        | 133.2            |
| Maximum Current                | mA       | 400              |
| Bending Dipole field; gradient | T; T/m   | 1.45545 ; -2.794 |
| Emittance x / z                | nm.rad   | 26 / 0.26        |
| RF frequency ; peak voltage    | MHz ; kV | 499.564 ; 2.4    |
| Natural bunch length           | cm       | 1.16             |
| Expected Beam Lifetime         | h        | 18               |

# **Radiation from BM & IDs**



9

# IDs @ SESAME

#### **SU6 Undulator from LURE**

 spectral range 30 – 110 eV, peak field 0.25 T, min. gap 39 mm, Max. K value 1.7

#### **PEP Undulator**

period length 77 mm, overall length 223 cm, Max. K value: 1.58

#### **ALS Wiggler**

• Period length 16 cm, 33 full poles, effective max. K value 27.

#### **SLS - Wiggler W61**

• Peak Field 2.0 T, Period length 16 cm, No. of periods 19

## **SLAC Undulator**







## ALS WIGGLER WITH SESAME MACHINE



The implication of the radiation opening angle of  $\pm 6.5$  mrad on the vacuum chamber in the horizontal plane to be studied.

# W61 MINIGAP WIGGLER

| <b>Overall length (</b> L <sub>w</sub> <b>)</b> | 2 m           |
|-------------------------------------------------|---------------|
| Minimum magnetic gap (w)                        | 8 mm          |
| Period length (l <sub>w</sub> )                 | 60.5 mm       |
| Number of poles (N <sub>p</sub> )               | 63            |
| Magnet material                                 | NdFe:B        |
| Pole material                                   | CoFe          |
| Maximum field (B <sub>max</sub> )               | <b>1.84</b> T |
| Effective field (B <sub>eff</sub> )             | 1.63 T        |
| Fourier amplitude ratio (B1/B0)                 | - 0.163       |
| <b>Deviation parameter (K)</b>                  | 8.6           |
| Critical energy (E <sub>c</sub> )               | 7.0 keV       |



## **SLS WIGGLER WITH SESAME MACHINE**

- SLS wiggler will be housed in long straight section.
- Wiggler parameters:
  - L=2m, Min. gap=7.5mm (B=1.86 T) Period length =61mm.
- Observation point :

Fixed aperture of 2.2mm(V) × 24.2mm(H) at 9.67m from source point.



| Magnetic<br>Gap [mm] | Vacuum<br>Cham.    | Max.<br>Field | Maximum Photon<br>Flux         | Critical<br>Photon | Total<br>Power | Photon Energy Range<br>[ KeV]  |
|----------------------|--------------------|---------------|--------------------------------|--------------------|----------------|--------------------------------|
|                      | Inner wall<br>[mm] | [Tesla]       | [Photons/sec/0.1BW]            | Energy<br>[KeV]    | [KW]           | (1% of Maximum<br>Photon Flux) |
| 7.5                  | 3.5                | 1.800         | 6.44 × 10 <sup>15</sup>        | 8.19               | 11.98          | 0.1 - 42.7                     |
| 9                    | 5                  | 1.598         | 5.23 × 10 <sup>15</sup>        | 6.64               | 7.88           | 0.1 - 34.2                     |
| 11                   | 7                  | 1.375         | <b>4.50 × 10</b> <sup>15</sup> | 5.72               | 5.84           | 0.1 – 29.5                     |
| 13                   | 9                  | 1.188         | <b>3.89 × 10</b> <sup>15</sup> | 4.93               | 4.35           | 0.1 – 25.5                     |
| 15                   | 11                 | 1.029         | 3.37 × 10 <sup>15</sup>        | 4.28               | 3.27           | 0.1 – 23.7                     |
| 17                   | 13                 | 0.895         | 2.93 × 10 <sup>15</sup>        | 3.72               | 2.47           | 0.1 - 20.4                     |

#### **SLS WIGGLER WITH SESAME MACHINE**



#### What is a Storage Ring?

Arrangement of components that enables electrons to circulate on a closed orbit for periods of several hours.



#### **Synchrotron Radiation Facility**



Movable absorbers in the frontend enable each beamline to stop the Xray beam inside the SR tunnel.



#### A Beamline = several hutches



# **Scientific Programme**

- Research in the domains :
  - Atomic and Molecular Physics
  - Material science
  - Nanotechnology
  - Molecular biology
  - Archaeology
  - Environmental studies
  - Medical research

# **Scientific Programme**

- SESAME has the capacity for ~ 28 beamlines
  - Straight Sections = 16 ( 8 long 4.44 m, 8 short 2.38 m): Beamline Length 21 - 36.7 m
- Storage ring energy = 2.5 GeV
  - Photon energies from IR to soft x-rays to hard x-rays
- Mission for beamline development is to ensure appropriate capabilities are present that:
  - Meet needs of very diverse user community (novice to experienced in many different areas of science)
  - Develop state-of-the-art user-friendly capabilities
  - Provide user support for carrying out outstanding science,
  - Clear and transparent policy that provide equal opportunities for access of beamtimes, and
  - Reward facility partners for their contributions

## **SESAME PHASE – I BEAMLINES**

| Beamline                                                                  | Energy<br>Range | Source                |
|---------------------------------------------------------------------------|-----------------|-----------------------|
| Protein Crystallography (PX)                                              | 4 – 14 keV      | <b>Bending Magnet</b> |
| X-ray Absorption Fine Structure & X-ray<br>Fluorescence <i>(XAFS/XRF)</i> | 3 – 30 keV      | <b>Bending Magnet</b> |
| Infra-red Spectro-microscopy (IR)                                         | 0.01 – 1 eV     | <b>Bending Magnet</b> |
| Powder Diffraction (PD)                                                   | 3 – 25 keV      | MPW                   |
| Soft X-ray                                                                | 0.05 – 2 keV    | EPU                   |
| Small and Wide Angle X-ray Scattering<br>(SAXS/WAXS)                      | 8–12 keV        | <b>Bending Magnet</b> |
| Extreme Ultraviolet <i>(EUV)</i>                                          | 10 – 200 eV     | <b>Bending Magnet</b> |



## **SESAME DAY-ONE BEAMLINES**

- PX Beamline IMCAN
  - International Macromolecular CrystAllography Nexus
- XRF Beamline BASEMA
  - Beamline for Absorption Spectroscopy for Environment and Material Applications
- IR Beamline EMIRA
  - ElectroMagnetic Infrared Radiation
- **PD Beamline SUSAM** 
  - SESAME USers Application for Material Science

#### **PROTEIN CRYSTALLOGRAPHY - PX**

# **PROTEIN CRYSTALLOGRAPHY - PX**

#### **Technical Specification:**

- Source is bending magnet
- Energy range 4 14 keV
- Energy resolution  $\Delta E/E$
- Divergence (at sample)
- Beam size (at sample)
- Beam intensity (at sample): band pass at 1 Å

**1.0 x 10**-3

< 0.3 mrad

**100 x 100 μm<sup>2</sup>** 

> 10<sup>10</sup> ph/s into the 10<sup>-3</sup>

- ✓ Study of Structural Molecular Biology
- ✓ Understanding proteins at the atomic level
- ✓ PX provides guidelines for developing new drugs

# **STRATEGY FOR PX**

- Mohammad Yousef mentor for the PX
- Spend summer(s) on SESAME site
- PX Beamline Scientist (hired soon) will work closely with him
- PX Groups: Egypt, Israel, Jordan, Pakistan, Turkey
- Plan to setup a dedicated laboratory on SESAME site
- ✓ Using components from Daresbury beamlines 14.1 & 14.2
  ✓ Use bending magnet as the source
- ✓ For future PX upgrade donation of in-vacuum undulator from NSLS1 or may be a complete beamline



# New drug discovery

- Time from conception to approval of a new drug is typically 10-15 years
- The vast majority of molecules fail along the way
- Cost to bring to market a <u>successful</u> drug ~
   \$800 million!!
- Anything to speed this up & reduce cost most welcome

# Proteins Fold in Defined 3D Structures >>>>>>>> Function



## Determining 3D Structure: a Very Complex Task



Crystallize

X-ray Data

**Determine/analyze structure** 

## **Solving Proteins using MAD**





- MAD (Multi-wavelength Anomalous Dispersion
- Requires:
  - Synchrotron beam lines
  - protein with multiple scattering centres
- Allows rapid phasing
- Proteins can now be "solved" in just 1-2 days

## X-RAY ABSORPTION FINE STRUCTURE AND FLUORESCENCE BEAMLINE – XAFS/ XRF

#### **X-Ray Absorption Fine Structure & Fluorescence**

#### **Technical Specifications:**

- Fixed exit monochromatic beam
- The energy range is 4 30 keV
- Energy Resolution  $\Delta E/E \approx 1 \times 10^{-4}$
- Focused beam (KB):  $8x10 \ \mu m^2$  for ~  $5x10^9 \ ph/S$  at 8 keV
- Flux on a sample 2x10<sup>12</sup> ph/s at 8 keV (non focused beam)

#### Techniques

- ✓ XAS, XRF, XRD combine with other techniques such as RAMAN, XES
- ✓ Redox imaging for small beam size

## **STRATEGY FOR XRF/XAFS**

#### **Messaoud Harfouche is the beamline scientist**

- XRF/XAFS beamline of SESAME is a donation from FZD Germany
- Known as ROBL beamline was operated by FZD at ERSF
- ROBL was dismantled last year.
- SESAME BL scientist was involved July 2011
- ROBL beamline arrived at SESAME in April 2012
- BL boxes were open in last three months
- To discuss various aspects of the BL, expert from ESRF A. Siminovici visited SESAME in October.

#### **Principle of X-Ray Fluorescence**



#### **Atom in the sample material**

#### **Example of X-Ray Fluorescence**



## **Status of BASEMA**









## **INFRARED BEAMLINE - IR**

#### **Infrared Spectro-Microscopy**

Infrared beamlines around the world are built using two types of emission:

-<u>Bending magnet</u> (constant field) emission : Most of IR beamlines in the world uses this type of emission

-<u>Edge radiation</u> : more recently exploited, and few beamlines uses this type of emission.

- At SESAME: IR radiation (BM + ER) will be collected at the end of 4.4 m long straight section

- With 15 mrad Vertcial and 39 mrad Horizontal opening

## **TECHNICAL SPECS IR BEAMLINE**

| SOURCE                                                    | BM + ER                                                                                                               |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| OPENING ANGLES                                            | <b>39 X 15 mrad<sup>2</sup> ( HXV)</b>                                                                                |
| NUMBER OF BRANCHES                                        | 1 ( with possibility of 2)                                                                                            |
| OPTICS                                                    | Toroidal, plane, cylindrical metallic<br>( Al) mirrors                                                                |
| MICROSCOPES +<br>SPECTROMETER COUPLED<br>WITH SYNCHROTRON | 1                                                                                                                     |
| DETECTORS                                                 | Mid IR 675-4000 cm <sup>-1</sup> ( MCT<br>broadband)<br>Far IR 50-700 cm <sup>-1</sup>                                |
| ACCESSORIES                                               | 32X,15X, ATR, Grazing Incidence<br>objectives Si, KBr,, QUARTZ<br>BEAMSPLITTERS<br>SINGLE & DOUBLE<br>APERTURING MODE |



## **STRATEGY FOR IR**

*Paul Dumas from SOLEIL is the mentor:* Ibraheem Yousef is the beamline scientist

# • Start generating science from SESAME even before the storage ring is operational

- IR microscopy at SESAME:
  - Globar source
  - FTIR Spectrometer
  - Microscope
- For SESAME IR beamline same equipment will be used for the completion of beamline only needs to add the optics
- Using SESAME capital funding for purchasing IR microscope,
- 3-4 months needed for the delivery
- IR lab will be operational by March 2013.

## **IR Microscope & FTIR**



## **POWDER DIFFRACTION BEAMLINE - PD**

## **POWDER DIFFRACTION - PD**

#### **Technical Specifications:**

- Energy range 3 25 keV
- Flux (10 keV) 1 x 10<sup>13</sup> ph/s/0.1%BW/0.4 A
- Focused spot size 160 (v) μm x 450 (h) μm
- Energy resolution  $\Delta E/E$  0.0139% (Si(111))
- Accepted divergence 0.23 (v) x 2.5 (h) mrad<sup>2</sup>
- ✓ Use X04SA beamline donated by the Swiss Light Source (SLS)
- ✓ Adaptation for SESAME is needed
- ✓ Use of mini-gap wiggler W61 with 11 mm magnetic gap







## **Layout for Powder Diffraction Beamline**



# **STRATEGY FOR PD**

- Ideas are discussed such as the concept of BL manager (not necessarily SESAME staff rather a senior person from an institute)
- BL Manager:
  - Expertise, Resources (manpower and financial)
  - Act like a spoke-person for a given beamline
- **SESAME provides:** 
  - Limited budget for travel (USD 5 10k per year)
  - Technical support in the form of staff
- MoU needs to be signed at the institutional level for each such case
- SESAME will hire a dedicated BL scientist

- 1. SOLEIL:
  - IR beamline Lot of work and efforts by Paul Dumas
  - **RF & Alignment**
- 2. Canadian Light Source:
  - Control Software and Hardware, Beamline Instrumentation
  - Using beamlines for various applications
  - MoU already signed between CLS and SESAME
- 3. ALBA Spanish Light Source
  - Beamline Construction and Commissioning
  - Design of Storage Ring components
  - Radiation Protection
  - Fellowships are offered
- 4. Swiss Light Source
  - Frontends for BLs closely followed by Amor and Albin
  - Material Science BL as donation

- 5. NSRRC Taiwan Light Source
  - Electronics and Instrumentation
  - Beamline Science and Techniques
  - Fellowships are offered
- 6. Portugal SESAME
  - Fellowship Program
  - Both PhD and Postdoc Level
- 7. LNLS Brazilian Light Source
  - Beamline Construction and Commissioning
  - Beamline Optics and Control
  - Fellowships are offered
- 8. Elettra
  - **RF Cavities**
  - Support for Training

- IAEA Support
  - TC Project INT-1-055 ended in 2011
  - New TC Project INT-0086 covering period 2012 15
- UNESCO Support
  - SESAME Council Secretariat
  - Financial Assistance
- CERN
  - **Procurement of magnets for the storage ring**
  - Cost for magnets covered by EU (~ 5 M Euro)
- JSPS
  - Organization of SESAME JSPS School for training
- ICTP
  - Training & Dissemination

- Cyprus Institute
  - LinkSCEEM Project Phase II on going
  - Focused on HPC and its applications
- APS/IoP/EPS/DPS/ACS/IUPAP
  - Various scientific societies contributing
  - Travel grants are given under the program
- Canon Foundation
  - Financial Assistance
  - In-kind contribution in terms of manpower (Steve Jones)
- Lounsbery Foundation
  - Support for young scientists visiting EU and US SR Facilities
  - SESAME Technical Team is also supported
  - Two year, one time, fixed funding

## **SESAME – ESRF**

- MoU signed in May 2012 at CERN, Geneva
- Many activities already taking place:
  - Optics, Computing, Training, Outreach
  - Donation of Equipment
- Future Avenues:
  - SESAME staff visits
  - Expert Visits
  - SESAME Summer School
  - Beamline Optics
  - Computing
  - LinkSCEEM Project

# **Available Opportunities**

http://www.sesame.org.jo/sesame/training-and-scholarships.html

- Lounsbery Foundation
  - One month fellowship for USA or Europe
- **Portugal SESAME Fellowships** 
  - PhD student 3 years
  - Postdoc Fellowship 1 year
- Postgraduate studies in UK
  - PhD students
- **SESAME SOLEIL Fellowships** 
  - PhD students to work at SOLEIL
  - September 2013
  - For PX & PDB beamlines