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This is how it started:!
Must synchrotron 
light be so 
mathematically 
complicated?!

NO!!!!
What matters is 

the underlying 
physics!
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Outline:!
•  Motivation: why do we need x-rays?!
•  Building an excellent x-ray source :!

•  3.5 minute presentation!
•  9.5 minute presentation!

•  A short history of this field!
•  A more detailed description of 

synchrotron light!
•  Coherence: a revolution!
•  Free electron lasers and other new 

sources!
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Why x-rays and ultraviolet light?!
To study something, it is better to use a probe with 

similar magnitude (size and energy)!
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synchrotron!
radiation!

atom or!
molecule!

scattered 
photons, 
fluorescence!

small-angle scattering!

fluorescence spectroscopy!

photoelectrons, 
Auger electrons! photoelectron/Auger 

spectroscopy!

transmitted 
photons!

absorption spectroscopy!

EXAFS!

molecular!
fragments!

fragmentation spectroscopy!

solid!
scattered photons! scattering!

photoelectrons, 
Auger electrons!
photoelectron/Auger 
spectroscopy!

transmitted 
photons!

absorption spectroscopy!

EXAFS!

fluorescence spectroscopy!fluorescence!

diffracted photons! X-graphy!

Atoms & 
molecules! desorption spectroscopy!

Synchrotron x-rays:!
Many different interactions!

↓!
Many different applications!
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SO, WE NEED X-RAYS AND SYNCHROTRONS 
GIVE THEM TO US: BUT HOW DO THEY WORK?�

THE “RELAXATION PROGRAM”: �
START! �

"STEP A (3.5 minutes): how are x-ray produced?�
AFTER STEP A -- OPTIONS: (1) relax for the rest of 
the day, or (2) go to step B �

"�

"STEP B (9.5 minutes): "how to get collimation? 
"And, again, how are x-ray produced?�

�

AFTER STEP B -- OPTIONS: (1) relax for the rest of 
day, or (2) go to step C�

"STEP C (the rest of the time… maybe more): 
"(almost) everything about synchrotrons and FELs�
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Synchrotron light in 3.5 minutes for 
lazy students (and teachers):!

Electron: 
Speed u ≈ c 

�

Magnet: �
Lorentz force ⇒ 
acceleration ⇒ 
photon emission �

Photon 
detector�

D �L �

Photon pulse duration:  Δt = L/u - L/c = (L/u) (1-u/c) �
Characteristic frequency: ν = 1/Δt = u/[L(1-u/c)] = u γ2 (1+u/c)/L �
For u ≈ c, (1+u/c) ≈ 2 and ν ≈ 2cγ2/L �
For L = 0.1 m and γ = 4000, ν ≈ 1017 s-1 -- x-rays! �
�

At time zero, the 
electron enters the 

magnet, is accelerated 
and emits photons�

The first photons 
arrive at the detector 
at the time (L + D)/c�

At the time L /u, 
the electron 

leaves the magnet�
The last photons 
arrive at the time 

L /u + D /c�

γ2 = 1/(1-u2/c2)�
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Synchrotron light in 9.5 minutes for (not 
entirely) lazy students (and teachers):!

Electrons circulating at a speed u ≈ c in 
a storage ring emit photons in a narrow 
angular cone, like a “flashlight”: why? �
Answer: RELATIVITY�

Seen in the electron 
reference frame, the 
photon are emitted in 
a wide angular range�

But in the 
laboratory frame 
the emission 
shrinks to a 
narrow cone�

photon	

c	


cy≈c	


cx≈0	


cx’≈u	

cy’	
θ	


Take a photon emitted in a near-transverse direction in the 
electron frame. In the (green) laboratory frame its velocity 
components become cx’≈u and cy’. But c, the speed of light, 
cannot change, so cy’≈(c 2-u 2)1/2 = c (1-u 2/c 2)1/2 = c/γ. �
The angle θ ’ is ≈ cy’/c = 1/γ -- very narrow!!! �

Electron frame	


Laboratory �
frame	


u	
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A torchlight-electron illuminates a 
small-area detector once per turn 
around the ring for a short time Δt �

Seen from the side of the ring, each 
electron looks like an oscillating charge in 
an antenna, emitting photons with a 
frequency 2πR/c -- in the radio wave 
range.�
What shifts the emission to the x-ray 
range? RELATIVITY AGAIN! �

A second look -- the emission is x-rays: why?!

Photon pulse duration: �
Δt = L/u + (D - L)/c - D/c = L/u - L/c = (L/u) (1-u/c) = (L/u)γ2/(1+u/c) �
For u ≈ c, (1+u/c) ≈ 2 and Δt ≈ L/(2cγ2) ≈ R/(2cγ3).�
Characteristic frequency ν = 1/Δt ≈ 2cγ3/R -- again, x-rays �

≈1|γ	


D �

L ≈ R (1/γ) � Photons start to be 
detected at the time D/c�

Detection ends at the 
time L/u + (D - L)/c �
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So, synchrotrons emit x-rays: but why 
is this interesting? Consider  

fireplaces and torchlights:!
A fireplace is not very effective 

in "illuminating" a specific 
target: its emitted power is 

spread in all directions!

This can be expressed 
using the “brightness”!

A torchlight is much more effective: it is a 
small-size source with emission 

concentrated within a narrow angular spread!
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The “brightness” (or brilliance) of a 
source of light :!

F!
ξ2 Ω	


Brightness = constant ______!

Source 
area, ≈ ξ2!
ξ!

Flux, F!
Angular 
divergence,!
solid angle Ω!
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Historical growth in X-ray brightness!
(units: photons/mm2/s/mrad2, 0.1% bandwidth)!



Advanced School on Synchrotron Radiation Techniques in Environmental Scientific Projects – Trieste, 2013!

What causes the high brightness of a 
synchrotron source? Three factors:!

1.  Electrons in vacuum can emit more 
power than electrons in a solid 
because the power does not damage 
their environment ⇒ high flux!

2.  The source size is not that of a 
single electron but the transverse 
cross section of the electron beam. 
The sophisticated trajectory control 
system makes it very small!

3.  Relativity drastically reduces the angular 
divergence of  the emission!
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The origins:!

An interesting history, a bright future:!

1897 -- J. J. Thompson 
discovers the electron!1898 -- Alfréd 

Lienard conceives 
synchrotron light!

1940s: Isaak Pomeranchuk, Dmitri Ivanenko 
and Julian Schwinger develop a full theory!
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24 April 1947: at General Electrics in 
Schenectady, Herb Pollock, Robert Langmuir, 

Frank Elder and Anatole Gurewitsch see 
synchrotron light for the first time:!

The GE 70 MeV 
synchrotron !

“a trivial design 
change and … a 

conscious disregard 
for the rules of 

radiation safety”  
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7 August 1968, 10:40 a.m.: 
Ulrich Gehrardt performs on 
Tantalus the first experiment 
with a dedicated synchrotron 
source:!
ONLY 45 YEARS AGO!!!!

1966:  Fred Brown (Urbana) proposes to Ed 
Rowe, the father of Tantalus, to use it as the 
first dedicated synchrotron source!
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Historical  Growth: !
Worldwide ISI data 1970-2011, Keyword: “synchrotron”!
1970: ! !62 items ! !!
2000: ! !4,455 items!
2011: ! !7,190 items!
Overall: !108,096 items!

Synchrotron Facilities in the World 
(2010): !

67 in 25 Countries!
(operating or under construction)!
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Let’s discover synchrotron light: this 
is a real facility -- Diamond (UK)!
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Inside a 
synchrotron 
facility!
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Undulator 
(periodic B-field, 

period L ≈ 
centimeters)!

Objective: building a very bright x-ray 
source using an “undulator” and relativity!

electron!
Speed u ≈ c!

Back to the laboratory frame, the wavelength L /γ emitted by the moving 
electron is Doppler-shifted by a factor ≈2γ, becoming L /2γ 2. The 
“macroscopic” undulator period is transformed into x-ray wavelengths!!

In the undulator 
(laboratory) frame, the 
electron moves at 
speed ≈c!

In the electron frame:!

The period L is 
Lorentz-contracted 
becoming ≈ L /γ!

The periodic B-field is accompanied by a perpendicular periodic E-field. 
Moving at a speed ≈c towards the electron, the undulator looks like an 
electromagnetic wave with wavelength L /γ. Synchrotron radiation is 
produced by the elastic scattering of this wave by the electron.!
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3 types of sources: 

1. Undulators: small 
undulations 

detector 
continuously 
illuminated 

time 

long 
signal 
pulse 

frequency 

hν/Δhν ≈ N 

detector 

narrow 
band 
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3 types of sources: 

2. Bending magnets: 

short 
signal 
pulse 

broad 
band 

time frequency 
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3 types of sources: 

3. Wigglers: large 
undulations 

Series of 
short 
pulses 

broad 
band 

frequency time 

More intensity 
than bending 

magnets 
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Bending magnet emission spectrum:!
The (relativistic) rotation frequency of 
the electron determines the (Doppler-
shifted) central wavelength: !
λo = (1/2γ 2)(2πcmo/e)(1/B)!

The “sweep time” δt of the emitted light 
cone determines the frequency spread 
δν and the wavelength bandwidth:!
Δλ / λo = 1!
 !

A peak centered at λc 
with width Δλ: is this 
really the well-known 
synchrotron spectrum?!
YES -- see the log-log 
plot:!

λ	
λ0	


Δλ!

log(λ)	


λo	


lo
g(

em
is

si
on

)	
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L = period!

Undulator emission spectrum:!

Central wavelength: L/2γ 2!

First correction: out of axis, the Doppler 
factor is not 2γ 2 but changes with θ ’!
Central wavelength: (L/2γ 2)/(1+ 2γ 2θ ’2)!

θ ’!

Second correction: stronger B-field 
means stronger undulations and less 
on-axis electron speed. This changes 
γ so that:!
Central wavelength: (L/2γ 2)/(1+ aB 2)!
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Synchrotron light polarization:!

Electron in a storage ring:!
!
!

TOP VIEW!
!
!

TILTED VIEW!
!

SIDE VIEW!

Polarization:!
Linear in the 

plane of the ring, 
elliptical out of 

the plane!

Special (elliptical) wigglers and 
undulators can provide ellipticaly 
polarized light with high intensity!
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fluorescent 
screen!

screen with 
pinhole!

Coherence: “the property that enables a 
wave to produce visible diffraction and 

interference effects” !

θ!
source 

(Δλ)!
ξ!

Example:!

The diffraction pattern may or may not be visible on the 
fluorescent screen depending on the source size ξ, on 
its angular divergence θ and on its wavelength 
bandwidth Δλ!
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Longitudinal (time) coherence: !

source 
(Δλ)!

•  Condition to see the pattern: Δλ/λ < 1!
•  Parameter characterizing the longitudinal coherence: 

“coherence length”: Lc = λ2/Δλ	

•  Condition of longitudinal coherence: Lc > λ!
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Lateral (space) coherence — analyzed with a 
source formed by two point sources: !

•  Two point sources produce overlapping patterns: diffraction 
effects are no longer visible.!

•  However, if the two source are close to each other an overall 
diffraction pattern may still be visible: the condition is to 
have a large “coherent power” (2λ/ξθ)2!
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Coherence — summary: !
• Large coherence length Lc = λ2/Δλ	

• Large coherent power (2λ/ξθ)2!

• Both difficult to achieve for small 
wavelengths (x-rays)!

• The conditions for large coherent 
power are equivalent to the geometric 
conditions for high brightness	
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Light-matter interactions in radiology:!

Absorption -- described 
by the absorption 
coefficient α!

Refraction (and 
diffraction/interference) -- 
described by the 
refractive index n!

For over one century, radiology was based on absorption: 
why not on refraction /diffraction?!
Condition: the effects depend on the direction – to exploit 
them one needs a spatially coherent source!
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Conventional radiology!

Refractive-index radiology (Giuliana Tromba)!
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Phase contrast 
micro-tomography: 

housefly!

Yeukuang 
Hwu, Jung 

Ho Je et al. !
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New types of sources:!
!

•  Ultrabright storage rings (SLS, new 
ESRF source) approaching the 
diffraction limit!

•  Inverse-Compton-scattering table-top 
sources!

•  Energy-recovery machines !
•  VUV free electron lasers (FEL’s) (such 

as CLIO)!
•  X-ray FEL’s!
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Electron,!
energy = γ!

Infrared!
photon  hν!

γ ' ≈ γ!
x-ray!
photon  hν '!

Doppler effect: in the electron frame, the photon energy ≈ 2γ hν. This is 
also the energy of the backscattered photon in the electron frame.!
!

In the laboratory frame, there is again a Doppler shift with a 2γ factor, 
thus:!
!
hν ' ≈ 4γ 2 hν!

The magic of 
Compton 

backscattering: 
changing infrared 

into x-rays!
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Energy-recovery LINAC sources!
The brightness depends on the 
cross section of the source, 
i.e., of the electron beam!

In a storage ring, the 
electrons continuously emit 

photons. This “warms up” 
the electron beam and 

increases its cross section!

Controlling the electron beam 
geometry is much easier in a 
linear accelerator (LINAC). 
Thus, LINAC sources can 
reach higher brightness levels !
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However, contrary to the 
electrons in a storage ring, 
the electrons in a LINAC 
produce photons only once: 
the power cost is too high  !

Energy-recovery LINAC sources!

Solution: recovering energy!

Accelerating 
section  !

Energy-
recovery 
section  !
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Towards FEL’s -- a normal laser:!

Active medium: provides 
the “optical amplification” 

of the photon beam!

Optical cavity: increases the photon beam 
path and the optical amplification!

Optical pump: 
puts in the 

active medium 
the energy to 
be converted 
into photons!

Result: 
collimated, 

intense, bright 
and coherent 
photon beam!



Advanced School on Synchrotron Radiation Techniques in Environmental Scientific Projects – Trieste, 2013!

Normal laser ⇒ x-ray FEL:!

Active medium: no gas, solid or liquid 
but “free electrons” in an accelerator: 
hight power possible without damage !

No x-ray mirrors ⇒ no optical cavity ⇒ enough 
amplification needed for one-pass lasing!

Optical pump: 
the free 

electrons 
provide the 
energy and 
transfer it to 
the photons!

Result: 
collimated, 

intense, bright 
and coherent 

x-ray beam!
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FEL’s: general scheme!
To emit photons and 

produce optical 
amplification, the 

electrons brought to 
(almost) the speed of 

light by an accelerator 
(for example, a LINAC 

or a storage ring) must 
pass through a 

“Wiggler” !
“Wiggler” (a 

periodic series 
of magnets)!

Electron 
accelerator!

Electron beam!

X-ray beam!
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This is what happens in detail:!

The combined wiggler+wave action 
progressively microbunches the 

electrons. The emission of 
microbunched electrons enhances 

the previously emitted waves !

A bunch of electrons 
enters the wiggler: 

some of them 
stochastically start 

emitting waves!
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Emission from microbunched 
electrons:!

With no microbunching, 
as electrons enter the 

wiggler, they emit in an 
uncorrelated way!

Instead, the electrons 
in the wiggler-induced 
microbunches emit in 

a correlated way, 
enhancing previously 

emitted waves!
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But what microbunches 
the electrons?!

Wiggler-induced electron 
oscillations (v = transverse velocity)!

Two key 
ingredients:!

The wave B-field and the electron 
transverse velocity v produce a 

Lorentz force f pushing the electrons 
towards zero-field points: could this 

be the cause of microbunching?!

Previously emitted photon wave 
with its E-field and B-field!

B!

E!
v!

f!
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…but something seems wrong: after 1/2 wiggler period, the electron 
transverse velocity is reversed. If the wave travels together with the electron, 
the B-field stays the same. Are the forces and the microbunching reversed? !

No! Electron and wave do not travel together: the electron speed is u < c. As 
the electron travels over L/2 in a time L/(2u), the wave travels over [L/(2u)]c. 

The difference is (L/2)(c/u - 1)≈ L/(4γ 2) = half wavelength !

L/2!

B-fields, velocities are reversed: the forces are not, and keep microbunching!

L/2 + λ/2!
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Why is microbunching (and 
lasing) more difficut for x-rays 

than for infrared photon? !
On one hand, at short wavelengths the 

microbunches are closer to each other and 
this facilitates microbunching!

But: !
•  Short wavelengths require a high electron energy corresponding 

to a large γ - factor!
•  The large γ makes the electrons “heavy” and therefore difficult to 

move towards microbunches: their transverse relativistic mass is 
γ mo and the longitudinal relativistic mass (directly active in the 
microbunching mechanism) is γ 3mo !

•  This offsets the advantage of closer microbunches, making 
microbunching difficult!

λ!
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…until maximum 
microbunching is reached 

and the gain saturates!

Microbunching produces correlated 
emission and a progressive gain in 
the wave intensity!

Because of the gain, the 
wave intensity increases 

exponentially with the 
distance in the wiggler… !

Wave 
intensity!

Distance!

For an x-ray FEL (no 2-mirror cavity), gain saturation must be 
reached before the end of the (very long) wiggler, in a single pass !
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Claudio Pellegrini, 
UCLA -- father of 
the X-FEL theory!
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The FERMI X-FEL 
at Elettra, Trieste!

The European X-FEL 
project underway at 

DESY, Hamburg!

The Swiss X-FEL at the 
Paul-Scherrer Institut!
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X-ray FEL coherence: !

Full lateral (space) 
coherence all the 

way to the hard x-
rays	


First coherence 
experiments on the 
Tesla Test Facility: 
full lateral 
coherence at λ = 
95 nm!
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For longitudinal (time) coherence, a 
critical problem:	


The  pulse time structure 
changes with each bunch, 

limiting the time coherence!

Amplification starts with the first waves 
stochastically emitted when the electron bunch 
enters the wiggler	


time	


Solution: “seeding” – the process is triggered by 
an artificially injected wave	


A complicated technology, recently implemented in 
the FERMI FEL at Elettra.	
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•  The EPFL colleagues (Marco Grioni, Davor Pavuna, 
Mike Abrecht, Amela Groso, Luca Perfetti, Eva 
Stefanekova, Slobodan Mitrovic, Dusan Vobornik, 
Helmuth Berger, Daniel Ariosa, Johanna Generosi, 
Vinko Gajdosic, Primoz Rebernik).!

•  The POSTECH colleagues (group of Jung Ho Je).!
•  The Academia Sinica Taiwan colleagues (group of 

Yeukuang Hwu).!
•  The Vanderbilt colleagues (group of Norman Tolk).!
•  The ISM-Frascati colleagues (group of Antonio Cricenti 

and Paolo Perfetti)!
•  The facilities: PAL-Korea, Elettra-Trieste, Vanderbilt 

FEL, SRRC-Taiwan, APS-Argonne, SLS-Villigen, LURE-
Orsay !

Thanks:!


