Introduction to SR for Environmental Sciences

Pr. Alexandre Simionovici ISTerre, Observatory of Sciences of the Universe of Grenoble alexandre.simionovici@ujf-grenoble.fr

Take home message: XRF + XAS + E-CT + XRD +...

+ IMAGING

Speciation Solubility Bio-availability TOXICITY

Toxicity of TE is linked to their bio-availability, itself linked to the chemical form at atomic scales -> speciation

Bio-geochemistry goals:

- Disentangle concentration & speciation in the evaluation of ecotoxicity of trace elements

Identify mobile/imobile forms and detoxification forms for the biosphere
 WHY ?

... to evaluate/attenuate the chemical risk, to « heal » the environment

Difficulties :

- scientific challenge because of the low abundance of most toxic elements (e.g. As, Hg, Cd), of the problems of the *in-situ* characterization of their chemistry and of the high heterogeneity of natural systems

Techniques :

- •X-Ray fluorescence (XRF) => chemical correlations
- X-Ray diffraction (XRD) => identification of host phases
- X-Ray absorption (XAS) => chemical forms at atomic scales
- X-ray tomography (XCT) => morphology & anatomy

μ Fluorescence : M-C Simulation / Experiment collab. : L. Vincze, T. Schoonjans, Mitac, Univ. of Antwerp

Polypropylene 2 µm

Currently:

1E13 ph/s

MDL=30 zg

47 nm,

MDL, E=15 keV, 1 x 2 μm²

μ - speciation: post-Chernobyl aerosols XANES on Uranium L_{III}

Univ. of Ås, Norway: B. Salbu, T. Krekling, O.C. Lind Univ. of Antwerp, Belgium, K. Janssens

- ★ calibration: U metal, UO₂ and U₃O₈ (0⁺ 6⁺) ★ FWHM ≥ 0.15 eV, $\delta E \approx 0.8 \text{ eV/q}$
- **2 x 5 μm**, flux 10⁹ ph/s., **2 5** sec./point

Salbu *et al,* Nucl. Instr.& Meth. A **467-468**, 1249-1252, 2001

Spectroscopy = starting point of combined analyses:

- Xanes calibration spectra
- multi-elemental analysis

SEM Image

μ -tomo, 1 μ m res., E = 20 keV

Xanes-Tomography = XANET / Spectro-tomography

E ≈ 17.2 keV E ≈ 17.1 keV Difference Dual energy tomography: (U. Bonse, 1986)

Particle weathering rate vs. U oxidation state

West: initial release (explosion) st

Oxidation state: +4 <u>+</u> 0.5 North: subsequent release (fire)

Oxidation state: +2.5 <u>+</u> 0.5

Oxidation state: +5 <u>+</u> 0.5

Cu storage in roots and export from roots to shoots (A. Manceau, ISTerre, CNRS&UJF)

Copper is essential for:

- photosynthesis
- mitochondrial respiration
- lignin synthesis
- root growth
- ethylene sensing
- reactive oxygen metabolism

Res. ≈ 70 nm

Fluorescence tomography (from ALS-10.3.2)

Distribution of Cu and Zn by AT/FT

3D XANES tomography

Rau *et al*, Nucl. Instr.& Meth. A , 200C, 445-450, 2003

Voxel resolved **XANES** spectra (2eV) -Scientific case: phase separations in metals

3D imaging: Difference of same reconstructed slice at characteristic energies

energy 4-energy 2

energy 5-energy 3

energy 6-energy 3

3D XANES full field imaging with a CCD HR camera (0.7 μm resolution)

PIXEL resolved XANES spectra

MoSi₂ Mo

MoO₃

EnviroSynch Environment – Synchrotron Erasmus for All Master in EcoX Equipex (A. Manceau)

- 5th year students; program of 18 months
- 2 semesters of <u>Courses</u> + <u>practicals/lab</u> = $2 \times 30 \text{ ECTS}$
- 1 semester of internship in **member/partner** labs
- 30% redundancy: **backbone** + **options** on 3 campuses

Members

FRANCE – Université J. Fourier, Grenoble ASimionovici, BLanson, PDonnadieu, LSpadini, MMunoz

Royaume Uni – Manchester University MDenecke +

Allemagne – Karlsruhe Institute of Technology JGöttlicher +

Synchrotron partners

ESRF, Grenoble PGlatzel, PCloetens, ASolé, JSusini, MCotte

ANKA, Karlsruhe JGöttlicher Diamond, Oxford FMosselmans

CLS, Saskatoon IPickering, GGeorge

Invited lecturers

PFenter, KNagy - Univ. of Illinois, RDähn- PSI Villigen, AManceau - ISTerre, TReich - Univ. of Mainz, LMichot - LEM + + +

Courses in Grenoble

Backbone	
X-ray Absorption/Emission Spectroscopy – PGlatzel	
	24 h – 3 ECTS
Crystal structure & organization of finely divided solids – BLanson	
Methods and tools of modern mineralogy - A Simionovici + MMunoz	56h – 6 EC I S
Asimonovici + Minimizz	24 h – 3 ECTS
Imaging with electrons: SEM and TEM – PDonnadieu	
	24 h – 3 ECTS
Mineralogy and Environment – MMunoz + ASimionovici	24 h 3 FCTS
Environmental Chemistry – LSpadini	24 m = 3 EC 13
	24 h – 3 ECTS
Soil chemistry and pollution – ASimionovici	
VCT VAC imag Humanmaatual imag DClaatang ACalé ACimiana	24 h – 3 ECTS
ACI, AAS Imag., Hyperspectral Imag. – PCloetens, ASole, ASImionov	24 h = 3 FCTS
Lecturers – PFenter, KNagy, RDähn, AManceau, TReich,	
<u>FMosselmans, LMichot</u> 24 h – 3	ECTS
TOTAL	248h - 30 ECTS

Starting ≥ Fall 2014