School on Modelling Tools and Capacity Building in Climate and Public Health

Rainfall Estimation

CECCATO Pietro
International Research Institute for Climate and Society, IRI
The Earth Institute Columbia University
61 Route 9W, Monell Building Lamont Campus
10964-8000 Palisades, NY
U.S.A.

Rainfall Estimation

IRI

What is Satellite Rainfall Estimation?

- There is no such thing as satellite rainfall measurement
- Satellite sensors just measure radiation emitted or reflected by hydrometeors and/or surface
- Satellite rainfall estimation techniques try to convert radiation measurements to precipitation information

What Do Satellite Sensors See?

—— VV, IR \& Thermal IR
MW (low frequency-
emission by rain)
MW (high frequencyscattering by ice)

Radar

Mixed

Liquid

Geostationary Satellites

- Located at about $35,800 \mathrm{~km}$ above the equator
- Visible, NIR and Thermal Infrared
- Repeat coverage about 15 to 30 minutes
- Observes events and their evolution

Polar-Orbiting Satellites Passive Microwave

Defense Meteorological Satellite Program (DMSP)

Special Sensor Microwave/Imager (SSM/ I)

- Swath width: 1400-km
- Seven passive MW channels

Radar and Passive Microwave on-board Satellites

Tropical Rainfall

Measurement Mission (TRMM)

- Precipitation radar (PR)
- 215 km Swath
- $\mathbf{2 5 0} \mathbf{m}$ vertical resolution
- TMI
- 9-channel MW

- 760 km swath
- VV/IR
- Lightening detector

Radar and Passive Microwave

TRMM product

Merging IR, Passive and Active Microwave

Rainfall Estimates

Combines the best features of both approaches:

- Good space/time resolution of geostationary estimates
- Better accuracy of microwave estimates

Satellite Rainfall Estimates

Products	Time Res	Space Res	Existence	PM	Gauge
CMORPH	Daily	0.25 deg	2002-Pres	Y	N
NRL	3-hourly	0.25 deg	2003-2006	Y	N
PERSIANN	3-hourly	0.25 deg	2000-2006	Y	N
TRMM-3B42	3-hourly	0.25 deg	1998-Pres	Y	Y
TRMM-3B42RT	3-hourly	0.25 deg	2002-Pres	Y	N
CPC-RFE	Daily	0.1 deg	2001-Pres	Y	Y
CPC-ARC	Daily	0.1 deg	1995-Pres	N	Y
GPCP-1DD	Daily	1.0 deg	1996-Pres		
TAMSAT	10-daily	$\sim 0.05 \mathrm{deg}$	1996-Pres	N	N
GPCP	MIonthly	2.5 deg	1979-2008	Y	Y
CIMIAP	MIonthly	2.5 deg	1979-2010	Y	Y
TRIVIM-3B43	Monthly	2.5 deg	1998-Pres	Y	Y

Global Precipitation Climatology Project (GPCP)

- Merged satellites with gauge
- 2.5° spatial resolution
- monthly rain rate
- Also 1-degree daily(1DD)
- 1979-2008 (monthly)
- 1997-2008(1DD)

http://cics.umd.edu/~yin/GPCP/main.html

Satellite Products

CPC-Merged Analysis of Precipitation (CMAP)

- Merged satellites, numerical model predictions and gauge observations
- $\quad 2.5^{\circ}$ spatial resolution
- monthly total rain
- Also 5-day total

From IRI data library

http://iridl.ldeo.columbia.edu/
SOURCES/.NOAA/.NCEP/.CPC/.Merged_Analysis/.monthly/.latest/.ver
2/.prcp_est/

Satellite Products

TRMM

3843 TRMM and others combined monthly accumulated surface rainfall

For Date From 2006/01/01 TO 2006/02/01
Note: This browse image shows monthly accumulated surface rainfall (mm) at 0.5 degree resolution,

- Active and passive microwave instruments
- 0.25° spatial resolution
- monthly total rain
- Also 3-hourly
- 1998-current

Satellite Products

RFE

- Merged satellites and gauge
- $\quad 0.1^{\circ}(11 \mathrm{~km})$ spatial resolution
- Daily total rainfall
- RFE1: 1995-2000
- RFE2: 2002-current

$$
\begin{gathered}
\text { NOAA CPC FEWS-NET Rainfall Estimate (} \mathrm{mm} \text {): } \\
\text { based on Satellite and Rain Gauge Data }
\end{gathered}
$$

http://www.cpc.ncep.noaa.gov/products/fews/rfe.html

Satellite Products

Africa Rainfall Estimate Climatology (ARC)

0.10 -degree (11 km) daily, combined IR and Gauge

1995-current

Latest Daily Anomaly (Difference Between Mean 1995-2004 and

Current
10 Yr Mean
Current)

Satellite Products

Africa Rainfall Estimate Climatology (ARC2)

0.10 -degree (11 km) daily, combined IR and Gauge

1983-current

http://iridl.Ideo.columbia.edu/
SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.ARC2/.daily/.est_pre

Satellite Products

NOAA CPC Unified Precipitation

0.5-degree daily, 1 Jan 1979 - 31 Dec 2005 (RETRO); 1 Jan 2006 to present (REALTIME)

The Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global Daily Precipitation is an optimal interpolation objective analysis of global daily station precipitation data available at the CPC. It is divided into a retrospective version (RETRO) covering 1979 to 2005, derived from more than 30,000 gauges, and a real-time version (REALTIME) covering 2006 to present, derived from approximately 17,000 gauges. The grid resolution is 0.5 deg . lat/lon. The data set also includes information on the gauge network density and country-to-country variations in the daily reporting period.
http://iridI.Ideo.columbia.edu/
SOURCES/.NOAA/.NCEP/.CPC/.UNIFIED_PRCP/.GAUGE_BASED/.GLOB
AL/.v1p0/.RETRO/.rain/

Validation of Rainfall Products

Validation:

Comparing Rainfall Estimates
with

Rain Gauge Data

Validation of Rainfall Products

Validation of Rainfall Products

- 120 Stations used
- Gauge data gridded using Climate Aided Interpolation
- Kriging for interpolating the means

Topography and distribution of gauges. The four 2.5 degree boxes are used for at 2.5 degree resolution, and the number of gauges in each box is given. Stations in the larger box is used for validation at 1degree resolution.

Validation of Rainfall Products

Monthly at 2.5-degree

Validation of Rainfall Products

10-day total at $1^{0} \times 1^{0}$

Comparison of CPC-RFE2, GPCP-1DD \& TRMM-3B42

Validation of Rainfall Products

The following statistics were used to evaluate the accuracy of the rainfall estimate products to retrieve rainfall: coefficient of determination (R^{2}), mean error (ME), standard deviation (Stdv), root mean square error (RMSE), mean absolute error (MAE), and bias.

$$
\begin{aligned}
& M E=\frac{1}{N} \sum(G-R) \\
& R M S E=\sqrt{\frac{\sum(G-R)^{2}}{N}} \\
& \text { MAE }=\frac{1}{N} \sum|(G-R)| \\
& \text { Bias }=\frac{\sum G}{\sum R}
\end{aligned}
$$

Where $R=$ reference rain gauge observation, $G=$ rainfall estimate product, and $N=$ number of data pairs. ME and MAE are in mm while $R^{2}, S t d v, R M S E$ and Bias are unit-less.

Validation of Rainfall Products

Monthly at 2.5-degree

N =360	GPCP	CMAP	3B43
CC	0.92	0.92	0.92
Bias	0.80	0.91	0.92
ME	-30	-12	-12

Data: 1998-2004

Validation of Rainfall Products

Monthly at 2.5-degree

Validation of Rainfall Products

$\mathrm{N}=306$	1 DD	3B42	TAMS AT	C M O RPH
CC	0.68	0.68	0.79	0.83
Bias	0.77	0.94	0.86	0.98
ME	-16	-4	-9	-1

10 Days at $1^{\circ} \times 1^{\circ}$

10-day @ $1^{\circ} \times 1^{\circ}$

Validation of Rainfall Products

Daily @ 0.25-deg	RFE	PERS	NRL	3 B42	3B42RT	CMORPH
CC	0.26	0.40	0.36	0.39	0.37	0.32
Bias	0.60	1.54	0.85	0.84	0.83	0.91

10-Daily @ 1 deg	RFE	1DD	3B42T	3B42	TAMSAT	CMORPH
CC	0.66	0.71	0.72	0.72	0.79	0.83
Bias	0.55	0.72	0.95	0.87	0.93	0.98

Monthly @ 2.5-deg	GPCP	CMAP	3 B43
CC	0.92	0.92	0.92
Bias	0.80	0.91	0.92

Improving Rainfall Estimates

Calibration:

Integrating Rainfall Gauges
within

Rainfall Estimates Derived from Satellites

Improving Rainfall Estimates

Comparison of rain gauge data (A), satellite estimates (B), gauge-only gridded products(C), and combined gauge-satellite product (D), over Ethiopia for 7 July 2003. All products have spatial resolution of 0.1º lat/long

Improving Temperature

Maximum temperature for $2^{\text {nd }}$ dekad of April 2000. Top-left panel is station data, while top-right panel is interpolated station data. Bottom-left panel is station data combined with dekadal averages of MODIS LST and DEM. The bottom right panel is topography included for reference.

Ethiopian Meteorology Agency

NIMA
 NATIONAL METEOROLOGY AGENCY

Climate Analyses and Applications Map Room
http://www.ethiomet.gov.et/

