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The role of models-(Olsson, 2002)
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Regression Problem

The classical linear model assumes a relationship be-

tween a set of variables (yi, xi) s.t.

yi = βxi + εi, i = 1, . . . , n

where

-β is a regression coefficient

-ε ∼ N(0, σ2)

-The observations yi are normally distributed

E(y|x) ∼ N(μi, σ
2)

-The mean μi is given as a linear combination with

μi = βxi.
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Regression Problem: Assumptions

-Distributional assumption:
The pairs (yi, xi) are assumed conditionally indepen-
dent.
-Structural assumption:
The expectation μi is related to the linear predictor
ηi = βxi by

μi = h(ηi) = h(βxi).

or

ηi = g(μi).

where
-h is a known one-to-one response function
-g is a link, i.e., the inverse of h.
-and η is a linear predictor.
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Classical Linear Model Fails:

Motivating Examples

• Assumption of:
(i) normally distributed errors fails;
(ii) When one has multiplicative models, LM fail.

• Motivating examples:

– Continuous data with nonconstant variance:
: Medical expenses;
: in Pharmacology (response to dosage concen-
tration)

– Binary data: Presence of disease (yes/no);
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– Ordinal data: Severity of disease;

– Categorical data (nominal data): type of cause
of death;

– Grouped data - Binomial data- (examined for dis-
ease, number diseased).

– Response as a proportion;

– Count data: Number of disease cases recorded-
y = 0,1,2, . . . ,∞;

– Response as a rate;

– (Zero-) Inflated data: -reported number of schis-
tosomiasis eggs in urine sample.



– Skewed data: utilization of Ante-Natal care;

– Duration data: Survival from onset of treatment;



Generalized Linear Models (GLM)

• Generalized linear models (GLMs) is a rich class of

statistical methods, which generalizes the classical

linear models in two directions, each of which takes

care of one of the above mentioned problems:

– GLMs work with a general class of distributions,

which contains a number of discrete and contin-

uous distributions as special cases, in particular

the normal, Poisson and gamma distributions.

– In GLMs some monotone transformation of the

mean is a linear function of the x, with the linear

and multiplicative models as special cases.
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• GLM theory is quite recent-the basic ideas were in-

troduced by Nelder and Wedderburn (1972).

• GLMs constitute a general statistical theory, which

has well established techniques for estimating stan-

dard errors, constructing confidence intervals, test-

ing, model selection and other statistical features.

• There is standard software for fitting GLMs that

can easily be used for a tariff analysis, such as the

SAS, GLIM, R or GenStat software packages.



GLM schema
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Three Components of a GLM

• The response or ”error” distribution:

The Yi(i = 1, ..., n) are independent random vari-

ables with means, μi. They share the same distri-

bution from the exponential dispersion family, with

a constant scale parameter:

– f(yi|θi, φ, ωi) = exp
{
yiθi−b(θi)

φ ωi + c(yi, φ, ωi)
}
, where

– θi is the natural parameter

– φ is a scale or dispersion parameter
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– b(·) and c(·) are specific functions corresponding
to the type of exponential family, and

– ωi is a weight with ωi = 1 for ungrouped data
(i = 1, . . . , n) and ωi = ni for grouped data (i =
1, . . . , g) or if an average or sum is considered
then ωi = 1/ni.

– Remark:
a) If φ is fixed then we have a one-parameter
exponential family.
b) If φ is unknown, then we have an exponential
dispersion model.

• The linear predictor or systematic component: ηi =∑p
1 βixi = Xβ, relating the response to the covari-

ates.



• The link function: η = g(μi) = g(Xβ).

• The choice of appropriate link function g depends
on the type of response.
Example of natural links:

– η = μ for the normal,

– η = logμ for the Poisson,

– η = log[ μ
1−μ] for the binomial

• Concerning the design vector:
Nothing new comes here compared to the classical
model.



– Categorical covariates, ordered or unordered, have

to be coded by a dummy vector.

– Metrical covariates can be incorporated directly

or after appropriate transformation like logx, x2, . . .

etc.



Standard models: Components of exponential

family

Distribution θ(μ) b(θ) φ

Normal N(μ, σ2) μ θ2/2 σ2

Bernoulli Binom(1, π) log(π/(1− π)) log(1 + exp(θ)) 1
Binomial Binom(n, π) log(π/(n− π)) log(1 + exp(θ)) n
Poisson P (λ) logλ exp(θ) 1
Gamma G(μ, ν) −1/μ − log(−θ) ν−1

Inverse IG(μ, σ2) 1/μ2 −(−2θ)1/2 σ2

Gaussian
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Standard models: Other links

Other link functions are:

• square root
√
μ

• exponent (μ+ c1)
c2 (c1 and c2) are known.

• complimentary log-log log[− log[μn]]

• probit Φ−1(μn)
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Standard models: Expectations and Variance

Distribution E(y) = b′(θ) var(y) = b”(θ) var(y) = b”(θ)φ/ω

Normal μ = θ 1 σ2/ω

Bernoulli π = exp(θ)
1+exp(θ)

π(1− π) π(1− π)/ω

Poisson λ = exp(θ) λ λ/ω
Gamma μ = −θ μ2 μ2ν−1/ω
Inverse μ = −(−2θ)−1/2 μ3 μ3σ2/ω
Gaussian
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Models for Continuous Responses

• Normal distribution:

– Assuming μ = η = βx leads to the classical linear

normal model.

– Sometimes a non-linear relationship μ = h(η),

e.g.

h(η) = η2, h(η) = log η, h(η) = exp η

will be more appropriate and can easily be han-

dled within GLM framework.

• Gamma distribution:
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– f(y|μ, ν) = 1
Γ(ν)

(
ν
μ

)ν
yν−1 exp

(
−ν

μy
)
, y ≥ 0

– The natural response function is the reciprocal
μ = η−1 s.t. η = βx.

– The other important response functions are the
identity

h(η) = η = μ,

and the exponential response function

h(η) = exp(η) = μ,

or, equivalently, the log-link

g(μ) = log(μ) = μ.

• Inverse Gaussian distribution:



– Right skewed-distribution.

– This distribution can be applied for nonsymmet-
ric regression analysis and for lifetimes.

– Examples include: length of hospital stay, Med-
ical costs, Clotting time of blood, Amount of
time plasmodium infection remains in the blood,
Claim amount in medical insurance.

– Many continuous, right-skewed distributions are
applicable:
log-gamma, Weibull, Burr, Pareto, generalized
Pareto, Makeham and Gompertz, all as candi-
dates for length of hospital stay distributions
(Hogg and Klugman, 1984).



Models for Binary and binomial response

• Suppose

y =

⎧⎨
⎩
1 if disease present

0 otherwise

• y ∼ Bern(π), where π is the probability or proportion
with the event of interest. s.t.

P (Y = y) = πy(1− π)y, for every y = 0,1.

• If binary data are grouped, then y ∼ Bin(n, π), s.t.
(n
y

)
πy(1− π)n−y
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• Four possible links:
Response Link Mean Variance
function
Linear π = η = βx 0.5 1/12
Logit log[ π

1−π
] = η s.t. π = exp(θ)

1+exp(θ)
0 π2/3

Probit π = Φ(η) = Φ(βx) 0 1
Compl.log-log h(η) = 1− exp(− exp(η)) -0.5772 π2/6



Response functions for binary responses
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Parameter Interpretation

• For the logistic model we have a linear model for
the ”log odds” s.t.

exp(β)

is called ODDS RATIO.

• For other link transformations this is not straight
forward.

• General rule:
-Interpret covariate effects as in the linear models.
-Back-transform the linear effect on η into a nonlin-
ear effect on π, i.e. use response function π = h(η).
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Models for Categorical data

• Suppose Anemia presence is classified as:

y =

⎧⎪⎪⎨
⎪⎪⎩

1 not present

2 mild anemia

3 severe anemia

• Or Cause of death

y =

⎧⎪⎪⎨
⎪⎪⎩

1 HIV

2 TB

3 DIABETES

-In the first example the response y is ordered;
-In the second example, the response y is nominal.
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Models for Nominal Responses

• First nominal (unordered) response:
This is an extension of the dichotomous response
variable yi ∈ {0,1}, where each category versus
some reference category is fitted as category-specific
logistic or probit model.

• Multicategorical logit model is given as

P (Y = r) =
exp(β0r + βrxi)

1 +
∑q

s=1 exp(β0s + βsxi)

or equivalently written as

log
P (Y = r)

P (Y = k)
= β0r + βrxi
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which is the log odds for category r with respect to

the reference category k.

• From the above one immediately gets the response

function h = (h1, . . . , hq) with

hr(η1, . . . , ηq) =
exp(ηr)

1 +
∑q

s=1 exp(ηs)
, r = 1, . . . , q.



Models for Ordinal Responses

• Ordinal responses stem from a different mechanism,

and can at times be seen as a mere categorization of

continuous variable, which can be observable (man-

ifest) or unobservable (latent) variables.

• It is stipulated that Y is a categorized version of

the latent variable U = η + ε obtained through the

threshold mechanism

Y = r ⇔ θr−1 < U < θr, r = 1, . . . , k,

with thresholds −∞ = θ0 < θ1 < . . . < θk = ∞.
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• Assuming the error variable ε has the distribution

function F , then Y obeys a cumulative model

P (Y ≤ r) = F (θr − η)

where η is the predictor.

• If F (x) = 1/(1 + exp(−x)) is a logistic distribution

we have a cumulative logit model:

P (Y ≤ r|x) =
exp(θr + γx)

1 + exp(θr + γx)

• If F (x) = Φ(x) is a cumulative normal distribution,

one has a cumulative probit:

P (Y ≤ r|x) = Φ(θr − η),



• Other specifications of ordinal response:

– extreme-minimal-value distribution:

F (x) = 1− exp(− exp(x)).

– extreme-maximal-value distribution:

F (x) = exp(− exp(−x)).

– log-log links:

log[− logP (Y ≤ r|x)] = −(θr + x′γ).

– sequential regression models.

– stereotype regression models.

– adjacent categories regression models



Count data (1)

• Count data- Recorded over time or space or both:
-e.g. No. of deaths, hospitalized cases, accidents
-Such data are recorded as: 0,1,2, . . . ,∞.

• Generally the Poisson distribution or some modifi-
cation should be the first choice.

• Log-linear Poisson model:

log(μ) = η = βx, μ = exp(η)

• If all covariates are categorical, this leads to mod-
elling of frequencies in contingency tables.

20



Count data (2)

Married Male Female
Yes y11 y12
No y21 y22

Translates to

i Married Gender Observation
1 Yes M y1
2 Yes F y2
3 No M y3
4 No F y4

• Therefore we model

log(yi) = β0 + β1 ∗Gender + β2 ∗Married.
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• If y is exactly Poisson-distributed, its variance equals

its expectation:

var(y|x) = μ

• Overdispersion: The case where the variance is

larger than expected. This is called extra-Poisson

variation.

• For count data we denote by

var(y|x) = σ(μ) = φμ

• More complex models that account for extra-variation

in the data are available:



– Quasi-Poisson model

– Negative binomial model

– zero-inflated models

– hurdle models

– finite mixture models



Duration data analysis

• Analysis of survival time, lifetime or failure data has
received considerable attention.

• Challenges of duration data:

– censoring,

– time-varying covariates,

– multiple failures

• Censoring means that the survival time is not known
for all individuals when the study is finished.
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-For right censored observations we only know that

the survival time is at least the time at which cen-

soring occurred.

-Left censoring, i.e. observations for which we do

not know e.g. the duration of disease when the

study started, is also possible.

• Denote the density function for the survival time

with f(t),

Let the corresponding distribution function be F (t) =∫ t−∞ f(s)ds.

The survival function is defined as

S(t) = 1− F (t),



and the hazard function is defined as

h(t) =
f(t)

S(t)
= −d log(S(t))

dt
.

The cumulating hazard function is H(t) =
∫ t−∞ h(s)ds.

• Modelling of survival data includes choosing a suit-

able distribution for the survival times or, which is

equivalent, choosing a hazard function.

(1). In nonparametric modelling, the survival func-

tion is not specified, but is estimated nonparamet-

rically through the observed survival distribution.

This is the basis for the so called Kaplan–Meier

estimates of the survival function.



(2). In parametric models, the distribution of sur-

vival times is assumed to have some specified para-

metric form. The exponential distribution, Weibull

distribution or extreme value distribution are often

used to model survival times.

(3). A semiparametric approach is to leave the dis-

tribution unspecified but to assume that the hazard

function changes in steps which occur at the ob-

served events.

• Most commonly used survival models: Cox Regres-

sion model (or Proportional hazard models- 1972).



Likelihood Inference

Estimation:

• Ordinary least squares/Iterative Weighted Least Squares

• Maximum likelihood/Restricted maximum likelihood

• Bayesian methods
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Maximum Likelihood Estimation

-For the Maximum likelihood in GLM, the estimates
are those parameter values that maximize the log like-
lihood,

 = log[L(θ, φ; y)] =
yθ − b(θ)

a(θ)
+ c(y, φ)

-The parameters of regression coefficient β are function
of θ.
-Differentiation of  with respect to the elements of β

using the chain rule yields,

∂

∂βj
=

∂

∂θ

dθ

dμ

dμ

dη

∂η

∂βj

-We have shown earlier that b′(θ) = μ and that b”(θ) =
V , the variance function.
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-Thus dμ
dθ = V ,

and η =
∑

βjxj we obtain

∂η

∂βj
= xj

-Putting together:

∂

∂βj
=

(y − μ)

a(φ)

1

V

dμ

dη
xj.

-The likelihood equation for the one parameter βj is

given by setting the above equation equal to zero, i.e,

∑
i

Wi(yi − μi)

a(φ)

dηi
dμi

xij = 0,

where W−1 =
(
∂η
∂μ

)2
V.



Model checking: Residuals and goodness-of-fit
statistics

• Deviance:
-GLM models can be assessed through the deviance
-Null model- one with one parameter only (mainly
the mean of all observations).
-Saturated (full) model has n parameters- one for
each observation.
-Full model used as a benchmark for assessing the
fit of any model to the data.
-This is done by calculating the deviance as

D = 2[(y, φ; y)− (μ̂, φ; y)]

where (y, φ; y) is for the log-likelihood for the full
model and (μ̂, φ; y) is for the current model.
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-D is distributed as χ2 as n increases.

-For competing models M1 and M2 use D(M2) −
D(M1) with the difference compared to χ2 with df2−
df1 degrees of freedom.

• Residual analysis:

-An alternative to the deviance is to use deviance

residuals e.g. Pearson’s χ2 residuals

χ2 =
∑ (y − μ̂)2

V (μ̂)

• Or use measures of fit:

-Akaike Information Criterion (AIC),



-Bayesian Information Criterion (BIC),

-Deviance Information Criterion (DIC).

• Testing for significance of variables:

-Likelihood ratio test

-Wald’s test

-Score test.



Relationship between common distributions

(Leemis, 1986)
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