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The role of models-(Olsson, 2002)

But ... I'm not using any
model. I'm only doing a
few 7 tests.




Regression Problem

The classical linear model assumes a relationship be-
tween a set of variables (y;, x;) s.t.

yizﬁxiﬁ—s?;,i:l,...,n

where

-8 is a regression coefficient

- ~ N(0,052)

- The observations y; are normally distributed

E(ylz) ~ N(ui, o)
-The mean u; is given as a linear combination with
pi = Bx;.



Regression Problem: Assumptions

-Distributional assumption:

The pairs (y;,x;) are assumed conditionally indepen-
dent.

-Structural assumption:

The expectation u; is related to the linear predictor

n; = PBxz; by
p; = h(n;) = h(Bx;).
or

n; = g(ps).
where
-h iIs a known one-to-one response function

-g is a link, i.e., the inverse of h.
-and n is a linear predictor.



Classical Linear Model Fails:
Motivating Examples

e Assumption of:
(i) normally distributed errors fails;
(ii) When one has multiplicative models, LM fail.

e Motivating examples:

— Continuous data with nonconstant variance:
. Medical expenses;
. in Pharmacology (response to dosage concen-
tration)

— Binary data: Presence of disease (yes/no);
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Ordinal data: Severity of disease;

Categorical data (nominal data): type of cause
of death;

Grouped data - Binomial data- (examined for dis-
ease, number diseased).

Response as a proportion;

Count data: Number of disease cases recorded-
y=0,1,2,...,00;

Response as a rate;

(Zero-) Inflated data: -reported number of schis-
tosomiasis eggs in urine sample.



— Skewed data: utilization of Ante-Natal care;

— Duration data: Survival from onset of treatment;



Generalized Linear Models (GLM)

e Generalized linear models (GLMs) is a rich class of
statistical methods, which generalizes the classical
linear models in two directions, each of which takes
care of one of the above mentioned problems:

— GLMs work with a general class of distributions,
which contains a number of discrete and contin-
uous distributions as special cases, in particular
the normal, Poisson and gamma distributions.

— In GLMs some monotone transformation of the
mean is a linear function of the x, with the linear

and multiplicative models as special cases.
.



e GLM theory is quite recent-the basic ideas were in-
troduced by Nelder and Wedderburn (1972).

e GLMs constitute a general statistical theory, which
has well established techniques for estimating stan-
dard errors, constructing confidence intervals, test-
ing, model selection and other statistical features.

e [ here is standard software for fitting GLMs that
can easily be used for a tariff analysis, such as the
SAS, GLIM, R or GenStat software packages.



GLM schema

General linear models Models for counts,

* Regression analysis proportions etc

* Analysis of Variance * Probit/logit regression
||| * Covaniance analysis | * Poisson regression ,
* Log-linear models

* Generalized estimating
equations




Three Components of a GLM

e [ he response or "error’ distribution:
The Y;(« = 1,...,n) are independent random vari-
ables with means, u;. They share the same distri-
bution from the exponential dispersion family, with
a constant scale parameter:

— f(yz|62, o, wi) = exp {yiei:bb(ei)wi -+ c(yi, o, wz)} , Where

— 0, is the natural parameter

— ¢ is a scale or dispersion parameter



— b(-) and c¢(-) are specific functions corresponding
to the type of exponential family, and

— w; IS a weight with w; = 1 for ungrouped data
(1=1,...,n) and w; = n; for grouped data (i =
1,...,9) or if an average or sum is considered
then wW; = 1/')’Lz'.

— Remark:
a) If ¢ is fixed then we have a one-parameter
exponential family.

b) If ¢ is unknown, then we have an exponential
dispersion model.

e T he linear predictor or systematic component: n; =

ZZ{ B,x; = X3, relating the response to the covari-
ates.



e The link function: n = g(u;) = g(X3).

e [ he choice of appropriate link function g depends
on the type of response.
Example of natural links:

— n = p for the normal,
— n = log p for the Poisson,

— n = log[{£] for the binomial

e Concerning the design vector:
Nothing new comes here compared to the classical
model.



— Categorical covariates, ordered or unordered, have
to be coded by a dummy vector.

— Metrical covariates can be incorporated directly
or after appropriate transformation like log z, 22, . . .
etc.



Standard models:

Components of exponential

family

Distribution O(w) b(0) )
Normal N(p,o?) I 62 /2 o2
Bernoulli  Binom(1l,7) log(n/(1—m)) log(l+ exp(H)) 1
Binomial Binom(n,w) log(x/(n—m)) log(l+ exp(H)) n
Poisson P()) log A exp(0) 1
Gamma  G(u,v) —1/p —log(—0) y1
Inverse IG(u, 0?) 1/p? —(—20)1/2 o2
Gaussian
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Standard models: Other links

Other link functions are:

square root /i

exponent (u 4+ ¢1)? (¢1 and ¢») are known.
complimentary log-log log[— log[£]]

probit &~ 1(&)
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Standard models: Expectations and Variance

Distribution FE(y) = b'(0) var(y) =b"(0) wvar(y) =b"(0)op/w
Normal u==~0 1 o2 /w
Bernoulli ™= 1_?_2?((5()9) (1l —m) (1l —7m)/w
Poisson A =exp(h) A Aw
Gamma = —0 u? vt jw
Inverse p=—(—26)"1/2 u3 p302 Jw
Gaussian
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Models for Continuous Responses

e Normal distribution:

— Assuming p = n = B« leads to the classical linear
normal model.

— Sometimes a non-linear relationship u = h(n),
e.g.
h(n) =n°, h(n) =logn, h(n) =expn

will be more appropriate and can easily be han-
dled within GLM framework.

e Gamma distribution:
13



. — 1 vV v—1 _v
Fylnv) =y (%) v texp (~4y),y > 0
— The natural response function is the reciprocal

pn=n"1st. n=_pz.

— The other important response functions are the
identity

h(n) =n=p,

and the exponential response function

h(n) = exp(n) = u,
or, equivalently, the log-link

g(p) = log(u) = p.

e Inverse Gaussian distribution:



Right skewed-distribution.

This distribution can be applied for nonsymmet-
ric regression analysis and for lifetimes.

Examples include: length of hospital stay, Med-
ical costs, Clotting time of blood, Amount of
time plasmodium infection remains in the blood,
Claim amount in medical insurance.

Many continuous, right-skewed distributions are
applicable:

log-gamma, Weibull, Burr, Pareto, generalized
Pareto, Makeham and Gompertz, all as candi-
dates for length of hospital stay distributions
(Hogg and Klugman, 1984).



Models for Binary and binomial response

e Suppose

__J1 if disease present
~ |0 otherwise

e y ~ Bern(w), where w is the probability or proportion
with the event of interest. s.t.

P(Y =y)=xY%(1 — 7)Y, for everyy =0, 1.

e If binary data are grouped, then y ~ Bin(n,n), S.t.
(n>7ry(1 — )Y
Yy

14



e Four possible links:

Response
function
Linear

Logit

Probit
Compl.log-log

Link
T=n=fx

T 1 — _ exp(h)
log[s*=] =ns.t. 7= TTexn(0)

= ®(n) = ®(Bx)
h(n) = 1 —exp(—exp(n))

Mean

0.5
0

0]
-0.5772

Variance

1/12
72 /3

1
72 /6



Response functions for binary responses

.0

logistic
——  probit

— — = comp.log—log
_— linear

0.0

L i i L | | | | | | | L | | | | |
-4.0 —-3.0 —-2.0 —-1.0 0.0 1.0 2.0 3.0 4.0




Parameter Interpretation

e For the logistic model we have a linear model for
the "log odds” s.t.

exp ()
is called ODDS RATIO.

e For other link transformations this is not straight
forward.

e General rule:
-Interpret covariate effects as in the linear models.
-Back-transform the linear effect on n into a nonlin-
ear effect on m, i.e. use response function = = h(n).

16



Models for Categorical data

Suppose Anemia presence is classified as:

(1 not present
y =412 mild anemia
|3 severe anemia

Or Cause of death

p

1 HIV
2 TB
|3 DIABETES

-In the first example the response y is ordered,
-In the second example, the response y is nominal.

<
|

17



Models for Nominal Responses

e First nominal (unordered) response:
This is an extension of the dichotomous response
variable y; € {0,1}, where each category versus
some reference category is fitted as category-specific
logistic or probit model.

e Multicategorical logit model is given as

exp(Bor + Brz;)
14 Zgzl exp(Bos + Bsz;)
or equivalently written as
P(Y =7r)
P(Y =k)

P(Y =r) =

log = Bor + Brz;

18



which is the log odds for category r with respect to
the reference category k.

e From the above one immediately gets the response
function h = (hy,...,hq) with

exp(nr) 4 .

h’(la"'a ): y ' —
i ' 1 ‘|‘Zg:1 exp(ns)



Models for Ordinal Responses

e Ordinal responses stem from a different mechanism,
and can at times be seen as a mere categorization of
continuous variable, which can be observable (man-
ifest) or unobservable (latent) variables.

e It is stipulated that Y is a categorized version of
the latent variable U = n 4 ¢ obtained through the
threshold mechanism

Y:T<:>9T_1<U<HT,T:1,...,]€,
with thresholds —oco =0 < 01 < ... < 0} = o0.
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Assuming the error variable £ has the distribution
function F', then Y obeys a cumulative model
PY <r)=F(0r—mn)

where 7 is the predictor.

If F(z) =1/(1+ exp(—=x)) is a logistic distribution
we have a cumulative logit model:

exp(0r + vx)

PO s rle) = T en @y + 7o)

If Fi(x) = ®(x) is a cumulative normal distribution,
one has a cumulative probit:

P(Y <7r|lx) = (0, — 1),



e Other specifications of ordinal response:

— extreme-minimal-value distribution:
F(x) =1 —exp(—exp(x)).

— extreme-maximal-value distribution:
F(x) = exp(—exp(—=x)).

— log-log links:
log[—log P(Y < r|z)] = —(0r + ).

— sequential regression models.
— stereotype regression models.

— adjacent categories regression models



Count data (1)

Count data- Recorded over time or space or both:
-e.g. No. of deaths, hospitalized cases, accidents
-Such data are recorded as: 0,1,2,..., cc.

Generally the Poisson distribution or some modifi-
cation should be the first choice.

Log-linear Poisson model:

log(p) =n =Bz, p=-exp(n)

If all covariates are categorical, this leads to mod-
elling of frequencies in contingency tables.
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Count data (2)

Married Male Female

Yes Y11 Y12
No Y21 Y22

Translates to

1 Married Gender QObservation
1 Yes M Y1
2 Yes F Y2
3 No M Y3
A No F Ya

e [ herefore we model

log(y;) = Bo + 51 * Gender 4 [ * Married.

21



If y is exactly Poisson-distributed, its variance equals
its expectation:

var(ylz) = p
Overdispersion: The case where the variance is

larger than expected. This is called extra-Poisson
variation.

For count data we denote by

var(yle) = o(p) = ¢u

More complex models that account for extra-variation
in the data are available:



Quasi-Poisson model
Negative binomial model
zero-inflated models
hurdle models

finite mixture models



Duration data analysis

e Analysis of survival time, lifetime or failure data has
received considerable attention.

e Challenges of duration data:
— censoring,
— time-varying covariates,

— multiple failures

e Censoring means that the survival time is not known
for all individuals when the study is finished.
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-For right censored observations we only know that
the survival time is at least the time at which cen-
soring occurred.

-Left censoring, i.e. observations for which we do
not know e.g. the duration of disease when the
study started, is also possible.

Denote the density function for the survival time
with f(t),
Let the corresponding distribution function be F(t) =

ffoo f(s)ds.

The survival function is defined as

S(t) =1—F(1),



and the hazard function is defined as

fQ@) _  dlog(S(t))
ht) = ONE dt '

The cumulating hazard function is H(t) = J* __ h(s)ds.

Modelling of survival data includes choosing a suit-
able distribution for the survival times or, which is
equivalent, choosing a hazard function.

(1). In nonparametric modelling, the survival func-
tion is not specified, but is estimated nonparamet-
rically through the observed survival distribution.
This is the basis for the so called Kaplan—Meier
estimates of the survival function.



(2). In parametric models, the distribution of sur-
vival times is assumed to have some specified para-
metric form. The exponential distribution, Weibull
distribution or extreme value distribution are often
used to model survival times.

(3). A semiparametric approach is to leave the dis-
tribution unspecified but to assume that the hazard
function changes in steps which occur at the ob-
served events.

Most commonly used survival models: Cox Regres-
sion model (or Proportional hazard models- 1972).



Likelihood Inference

Estimation:

e Ordinary least squares/Iterative Weighted Least Squares

e Maximum likelihood/Restricted maximum likelihood

e Bayesian methods
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Maximum Likelihood Estimation

-For the Maximum likelihood in GLM, the estimates
are those parameter values that maximize the log like-
lihood,

¢ = 10g[L(8, $; y)] = yea‘(j)(” + c(y, 6)

-The parameters of regression coefficient 8 are function
of 0.
-Differentiation of £ with respect to the elements of 3
using the chain rule vyields,

o  0tdfdu on

0B;  00dudnop;
-We have shown earlier that ¥/(0) = u and that v (9) =
V', the variance function.
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dp
-Thus 40 = Vv,
and n = > f,x; we obtain
on
9B;
-Putting together:
ot _ (y—p)ldu
— = = Xy
dB; a(¢) Vdn
-The likelihood equation for the one parameter j§; is
given by setting the above equation equal to zero, i.e,

Wiy, — pi)dn;
2@

where W—1 = (g—Z)QV

= 0,



Model checking: Residuals and goodness-of-fit
statistics

e Deviance:
-GLM models can be assessed through the deviance
-Null model- one with one parameter only (mainly
the mean of all observations).
-Saturated (full) model has n parameters- one for
each observation.
-Full model used as a benchmark for assessing the
fit of any model to the data.
-This is done by calculating the deviance as

D = 2[£(y, ¢, y) — £(i1, ¢; y)]
where £(y, ¢;y) is for the log-likelihood for the full
model and ¢(ji, ¢;vy) is for the current model.
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-D is distributed as x? as n increases.

-For competing models M7, and M> use D(M>) —
D(M7) with the difference compared to 2 with dfso—
df1 degrees of freedom.

Residual analysis:
-An alternative to the deviance is to use deviance
residuals e.g. Pearson’s x2 residuals

> (y—0)?
=LY

Or use measures of fit:
-Akaike Information Criterion (AIC),



-Bayesian Information Criterion (BIC),
-Deviance Information Criterion (DIC).

Testing for significance of variables:
-Likelihood ratio test

-Wald's test

-Score test.



Relationship between common distributions
(Leemis, 1986)
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Hy per gecmetric
M, N, K

o —
'._.-l"-

e e M = K
No= e

Bermoulli

ph

Uniform

Dioashle
axponential
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