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Statistical Analysis

@ Exploratory Analysis to:

@ describe the data
@ support the selection of appropriate statistical techniques

@ Hypothesis testing:
@ Does this observed pattern differ from... ?
@ Modelling:

@ What is the effect of rainfall, humidity and temperature on the number
of cases of malaria?
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Time Series

@ A sequence of data points, measured typically at successive points in
time spaced at uniform time intervals

@ Time series analysis — methods for analysing time series data in
order to extract meaningful statistics

@ Natural temporal ordering can result in serial dependence —
dependence of each time point on previous points

@ Components:

@ Trend
@ Seasonality and cyclical patterns
@ Time dependence structure
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Introduction

Time dependence structure: autocorrelation

@ Autocorrelation (or autocovariance) is a measure of similarity of the
event over time with itself previously

@ It is the correlation between values of a random process at different

mes 5, (5 — 7) (@i — )
(0 — 7)°

@ |t is a tool to depict the structure of the time series

T —

MSC (Fiocruz) Time 7 /9



ACF — example
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ACF — example
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Qutline

@ Introduction
@ Motivating Example — Leptospirosis
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Motivating Example — Leptospirosis Epidemics

@ Bacterial zoonosis (Leptospira sp)

@ Transmitted to humans through contact with urine from infected
animals (rats in urban setting)

@ Clinical manifestations:

o self-limiting fever, with headache and muscle pain — easily taken for a
bad cold or dengue fever

@ life-threatening disease — kidney failure, pulmonary hemorrhage, Weil's
syndrome

o early treatment! (dialysis mainly)

@ Globally spread, affecting people on all continents — 5-10% mortality
of severe cases; about 607 deaths in 2014

@ Sporadic disease, related with specific occupational exposures and
recreational activities
@ Slums and flooding in urban areas
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eptospirosis & Climate

@ People living in slums — a seroprevalence survey at Pau-da-Lima
(Salvador/BA) indicates 23% at 50 years of age

@ However, not many severe cases (three in 8 years)
@ Severe cases numbers increase during the tropical storms season

@ Reasoning: heavy rainfall cleans out the rats holes, bringing the
Leptospira to the soil surface

@ People clean mud after flooding — large inoculant dose
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L eptospirosis & Climate: main questions

@ Does rainfall really lead to severe leptospirosis epidemics?
@ Are other environment factors — humidity & temperature — involved?

@ Is there a threshold?

@ What is the time delay between tropical storms and increase in the
number of cases?

@ duration of incubation period
@ survival of Leptospira on the soil, possibly related to temperature, sun
and moisture
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@ Local epidemiology surveillance system

@ Weekly aggregated cases

@ Climate covariates (per week):

@ temperature (mean and maximum)
@ mean relative humidity
@ accumulated rainfall
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Outline
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@ Kernel
@ Loess
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Exploratory analysis — The usual
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Exploratory analysis — Line Charts

Tuberculosis
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Exploratory analysis — Line Charts

Aedes aegypti & rainfall
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Exploratory analysis — Line Charts

Leptospirosis data
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Exploratory analysis — Smoothing

Leptospirosis
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Exploratory Analysis

Leptospirosis
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Exploratory analysis — Smoothing
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Smoothing

@ Moving average — very simple

@ Kernel density — a non-parametric way to estimate the probability
density function of a random variable

@ LOESS or LOWESS - locally weighted scatterplot smoothing

@ Splines — minimisation of an objective function where a trade-off
between fidelity to the data and roughness of the function estimate is

explicit
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Qutline

© Exploratory Analysis
@ Kernel
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Running average
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Kernel — the algorithm

@ Define the kernel function:

@ symmetric

@ unimodal

@ centred on ()

@ going to zero at the edge — neighbourhood

Q Let (z) be the point where to estimate f(.)

© Define the limit of the area of influence of each point — window or
bandwidth

@ This range controls the smoothing parameter of the kernel function

@ Calculate the value of f(x) for each point and connect them.
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Kernel — the function

o =57 S ()

h — bandwidth — can be estimated by cross validation

K — smoothing function
1

V27

Gaussian Kernel: k(z) = exp(1/2x?)
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Kernel — several functions
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Kernel — Example

Kernel Smooth
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Kernel — Border effect

Kernel Smooth —- Efeito de Borda
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Kernel

@ Advantages: simple, great for exploratory analysis.

@ Problem: border effect.

@ Very sensitive to bandwidth.

@ Automatic choice of bandwidth may not be desirable.

@ Not very sensitive to function shape, as long as it is smooth.
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Qutline

© Exploratory Analysis

@ Loess
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| oess

@ Similar to the kernel, but the base is a local regression instead of a
weighted average

@ At each point (x) and neighbouring points (window or bandwidth) a
polynomial is fitted using weighted least squares, where closer points
are given larger weight

@ The bandwidth or smoothing parameter controls the flexibility of the
regression

@ The degree of the polynomial regression is in general low:

@ A polynomial of degree 0 = running average;
@ First degree = local linear regression
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Exploratory Analysis Loess

Loess — Span & Degree

Loess — Bandwidth e Grau do Polindmio
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Exploratory Analysis Loess

Loess — Span & Border

Loess — Bandwidth
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| oess

@ Advantages:

@ simple, great for exploratory analysis.
@ Less sensitive to border effect

@ Disadvantages: sensitive to extreme values
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Comparing

http: //en.wikipedia.org/wiki/Kernel_smoothing
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Exploratory Analysis Loess
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Comparing

Local linear
regression result

Fig.: Loess
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Qutline

© Exploratory Analysis

@ Splines
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Splines

@ Splines are smooth polynomial function piecewise-defined

@ Very smooth, including the places where the polynomial pieces or
knots connect

@ Splines do not oscillate ate the edges (Runge's phenomenon present
when using high degree polynomial interpolation)
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Splines

@ A problem of penalised regression: a solution for f(x) that minimises:

Z[?/i—f(fvi)]2+7/ [f"(2)])* dx

where 7 is the smoothing parameter: controls the trade-off between
fidelity to the data and roughness of the function estimate

o If 7=0— f(z) interpolating spline
o If 7is very large, [ [f”(z)]?dz needs to approach zero — linear least
squares estimate

o When 3 [y; — f(2;)]” is replaced by a log-likelihood — penalised
likelihood

@ The smoothing spline is the special case of penalised likelihood
resulting from a Gaussian likelihood
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Splines

@ The choice of the smoothing parameter can be visual or via some
automatic algorithm (e.g. cross validation)

@ The results of splines and loess are similar for similar degrees of
freedom

@ Multivariate splines: n = Bo + fi(xi1, i, - -, Tip) + - - -

@ Several applications to temporal and spatial models
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Splines — bandwidth

© —Graus de Liberdade 0 0,0~ 0
* 4
_2 sy
--5 s
...15 -"/I
[eo]
o ©
£
a
(2]
<t —
Al —
¢
é
| | |
5 10 15
X

MSC (Fiocruz) Time 45 / 94



Splines functions

@ Cubic regression spline — 3" degree polynomial fitted to knots
distributed over the data range

@ Cyclic cubic regression spline — imposes the first and last values to be
equal (interesting for seasonal time series)

@ P-splines — with a differential penalty for adjacent parameters, to
control “wiggliness”

@ Thin plate — the smallest mean square error, smallest number of
parameters, considered the optimal estimator, easily adapted to two
dimensions (space!)

@ Tensor Product — Similar to Thin Plate, better when scale of each
dimension is not the same
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Splines functions
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Choice of function

@ Modelling just one variable — time — not much difference

@ For more then one variable — space — choose carefully:

@ Thin plate:
@ Isotropic,
@ Invariant to rotation
@ smaller square error
@ smaller number of parameters, considered the optimal estimator
@ HOWEVER: sensitive to changes in scale
@ Tensor Product:

@ possible to have different scales
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Exploratory Analysis Splines

Splines functions— summary

bs=  Description Advantages Disadvantages

“tp"  Thin Plate Multiple covariates Computationally intensive
Rotational invariant Varies with
Optimal estimator scale

“tpr' Tensor Product Multiple covariates Varies with
Scale invariant rotation

“cr’  Cubic Computational cheap Only one variable

Regression Parameters directly Based on knots choice

interpretable Non-optimal estimator

“cc”  Cyclic CRS Beginning and end ='s  the same

“ps’  P-splines Any combination of Evenly spaced knots

base and order

Not easily interpretable
Non-optimal estimator
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Exploratory Analysis

Changing the scale
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GAM

Outline

© Additive Models
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GAM

The problem

How do these variables behave in relation to each other?

Age — external causes deaths from 5 to 45 years
Income — cardiovascular diseases
Distance to health services — mammography

Adherence to HIV treatment — development of virus resistance

Time — transmissible diseases

e 6 6 6 6 ¢ ¢

Space — vector-borne diseases
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GAM

GAM - definition

@ extension of GLM, where the linear predictor 7 is not limited to linear
regression

@ the model includes any function of the independent covariates (z;):

n = Bo+ filz) + fo(ze) + ...

@ f(x) — can be a non-parametric function such as lowess

@ When to use? When the covariate effect changes depending upon its
value
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GAM

Why not to use

@ Statistical models aim to explain the observed data, not to simply
reproduce it — overfitting

@ Parametric models in general are better to estimate standard errors or
confidence intervals

@ Parametric models are more efficient, if correctly specified (smaller
number of observations)
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Outline

@ Decomposition of time series
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The problem

@ Going back to the leptospirosis example.
@ To estimate the effect of rainfall, humidity and temperature on the
number of cases of leptospirosis

@ Why not just apply a regression model?

@ Irend
@ Seasonality
@ Autocorrelation
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Autocorrelation

@ Autocovariance is the covariance of the variable against a time-shifted
version of itself

Cuw(t, 8) = E[(Xe — pe)(Xs — pis)] — pafis

@ If X (¢) is stationary — s = s = p and
O:E:E(ta 8) — O:mc(ta 8) — Oﬂ?ﬁE(T)

@ Autocorrelation cg; (7) = Cipy(7) /0>
T — the lag
o2 — the variance

@ |t is a measure of how similar a series is to a time-shifted version of
itself

@ Range: [—1,1]

MSC (Fiocruz) Time 58 / 94



Autocorrelation
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Seasonality

@ Component of a time series which is defined as the repetitive and
predictable movement around the trend line

@ Not necessarily related to climate seasons
@ Can be either removed or modelled:

@ sinusoid
@ including each month (or season) as a categorical variable
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Seasonality: sinusoid
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Trend

@ A stationary process is a stochastic process whose joint probability
distribution does not change when shifted in time (or space)

@ Mean and variance, if they exist, are constant
@ Trend model: linear (?!7), polynomial, splines

@ Do we really want to remove the trend?
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Modelling time series

@ Time series books — ARIMA models

@ Not much used in epidemiology:

@ Intervention
@ Explanation
@ "Causes”

@ Regression models including (if needed) AR components

@ Emphasis on covariates

MSC (Fiocruz) Time 64 / 94



GAM for Time Series

@ T he main idea is to model the effect of covariates on some health
event over time
@ Reasons:

@ allow the inclusion of time dependence
@ non-linear relationship
@ trend and seasonality can be easily incorporated

MSC (Fiocruz) Time 65 / 94



GAM for Time Series

@ Considering the response variable a count, the best choices in GLMs
are:
@ Poisson: A\ = expected values and = variance — overdispersion
@ Quasipoisson — it is not a distribution, but a way to relax the previous
assumption and allow for overdispersion. It does not present AlC.

@ Other models, very often used:
@ Negative Binomial — has a mean pu, scale parameter 6 and variance
function V(u) = p + u?/0.
@ Zero-inflated models — mixture models combining a point mass at zero
with a count distribution such as Poisson, geometric or negative
binomial — are available as well (package VGAM)

MSC (Fiocruz) Time 66 / 94



GAM for Time Series

Lepto(t) = rain(t—7)+humidity(t—7)+AR(t, t—1)+trend+seasonality+e

@ Trend and seasonality — smooth function
@ Covariates — time lag

@ It is possible to include the variation on the population at risk (offset)
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Lag

Outline

Distributed Lag Models
(5 g
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Lag

Why Distributed Lags?

@ When risk factors and health events are measured on populations:

@ asthma & air pollution
@ cold weather & heart attack
o flooding & leptospirosis

@ Between climate and health event — time interval — lag

@ Questions:

@ How much time after?

@ How long does the effect last?

@ When does the effect disappear?
@ Is there a threshold?

MSC (Fiocruz) Time 69 / 94



Lag

Recommended reading

@ Schwartz J. The distributed lag between air pollution and daily
deaths. Epidemiology, 2000;11(3):320-326.

@ Welty, LJ. & Zeger, SL. Are the Acute Effects of Particulate Matter
on Mortality in the National Morbidity, Mortality, and Air Pollution
Study the Result of Inadequate Control for Weather and Season? A
Sensitivity Analysis using Flexible Distributed Lag Models. American

Journal of Epidemiology, 2005;162:(1):80-88.

@ Gasparrini A., Armstrong, B., Kenward M. G. Distributed lag
non-linear models. Statistics in Medicine. 2010; 29(21):2224-2234.

@ Armstrong B. Models for the relationship between ambient
temperature and daily mortality. Epidemiology. 2010, 17(6):624-631.
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Lag

Problems

@ Effects change over time — increasing and decreasing
@ Covariates — temperature, humidity, rainfall and pollution — highly
correlated

@ Possible non-linear structure
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Lag

Effect throughout time

@ In a linear model the sum of the effect of all independent variables,
shifted by each time lag, is associated with the outcome

y(t) =v+ Boxe + frae—1 + Pai—o + ... + Brz—k + ¢ (1)

@ Supposing that the number of events in a week follows the rainfall
one week before

@ This number increases up to two weeks after, and decreases smoothly
up to the 5™ lag, the graphic of the 8's of the model would present a
curve such as:
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Effect throughout time

Lag
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A hypothesized curve showing the impact of an environmental toxin over time. The effect rises,
and then falls, possibly with a long tail. The goal of this analysis is to determine what the actual

shape of the curve representing the time course of deaths after exposure to PM10 is.
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Lag

Alternative models

@ Running average of the predictor — the shape of increase and
decrease cannot be observed

@ One parameter for each lag — no supposition about the shape of the
curve

@ To restrict the parameters to a specific shape — PDL (Polynomial
Distributed Lag)

@ To combine possible non linear effects with lag — DLNM (Distributed
lag non-linear models)
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Lag

Effect throughout time

@ We use a transformation to represent the accumulated effect of X,
weighted by a polynomial (2°degree)
@ With this transformation of X = Z:

@ colinearity disappears
@ the shape induced on the relationship (in the example quadratic),
imposes a restriction on the parameters

@ After estimation of the parameters o of z, parameters 5 for X are
obtained via back transformation

@ The error of o goes back as well to 3
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Lag

When the effect is non-linear

@ The solution is a combination of splines and lags

@ cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

@ The idea is to specify two independent set of base functions

@ PDL is a particular cases of DLNM, with a linear predictor
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Lag

When the effect is non-linear

@ The solution is a combination of splines e lags

@ cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

@ The idea is to specify two independent set of base functions

@ PDL is a particular cases of DLNM, with a linear predictor
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Lag

How to interpret

@ A grid is built on possible predicted values over time

@ It is possible to evaluate the effect of a given value of the predictor
over time — cut-points

@ Or observe on each lag the shape of the relationship between
predictor and outcome

@ |t is also possible to estimate the cumulative effect over time for
values of the predictor
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Lag

Rainfall & Leptospirosis
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Outline

© Modelling
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Models for Time Series

@ ARIMA or SARIMA models: regression models where independent
variables are just a shifted version of the dependent variable.

@ Stationary time series:

@ stochastic process whose joint probability distribution does not change
when shifted in time or space

@ mean and variance do not change over time or position

@ removing trend and seasonality (S and | terms)

detection of order of autoregressive and moving average terms
fit, evaluation, ...

prediction

e 66 ¢ ¢

Dynamic models!
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Modelling for:

@ Explaining why events happen this way over time:

@ Independent variables are associated with events y in ¢ — regression
@ Past events are “cause” of present events ¢ — dynamic models

@ How to predict t + k7
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Exploratory analysis

Number of
Cases

Rainfall

Relative
Humidity

Maximum
Temperature
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Exploratory analysis — trend
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Colinearity
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Colinearity
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Colinearity
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Structure

@ Autocorrelation

@ Components
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Modelling

Functional form
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Seasonality

@ Exclude the seasonality of the independent variables using sinusoid
functions.

@ Use the residuals of this seasonal model as independent variables
@ Include a seasonal term in the complete model

@ Interpretation is the same, as the residuals keep the same measure
unit: the meaning of the parameter estimated is the same
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Multiple model

@ Test the significance of each time lag, respecting the functional form
@ Join all lags and covariates

@ When the functional form is not linear — categorise, segmented
regression, CART model (Classification and regression trees)

@ Splines & PDL
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Modelling

Residuals

@ ACF of residuals again
@ still trend?

@ inclusion of AR term
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Modelling

Summary

@ Counts: Poisson, Quasipoisson or Negative Binomial —
overdispersion!

@ Trend and seasonality — s(tempo) e s(tempo, k=52)
@ Removal of seasonality of independent variables

@ Regression model

gam(cases ~ offset(log(pop)) + s(time) +
sin(2*pix(1:\text{length(dataset)}/52.14) +
covs + lag(cases, 1),
family=negbin(c(1,10), data=dataset)
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Modelling Time J
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© Modelling
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Outline

@ Introduction
@ Motivating Example — Leptospirosis
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Statistical Analysis

@ Exploratory Analysis to:

@ describe the data
@ support the selection of appropriate statistical techniques

@ Hypothesis testing:
@ Does this observed pattern differ from... ?
@ Modelling:

@ What is the effect of rainfall, humidity and temperature on the number
of cases of malaria?
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Time Series

@ A sequence of data points, measured typically at successive points in
time spaced at uniform time intervals

@ Time series analysis — methods for analysing time series data in
order to extract meaningful statistics

@ Natural temporal ordering can result in serial dependence —
dependence of each time point on previous points

@ Components:

@ Trend
@ Seasonality and cyclical patterns
@ Time dependence structure
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Introduction

Time dependence structure: autocorrelation

@ Autocorrelation (or autocovariance) is a measure of similarity of the
event over time with itself previously

@ It is the correlation between values of a random process at different

mes 5, (5 — 7) (@i — )
(0 — 7)°

@ |t is a tool to depict the structure of the time series

T —
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ACF — example
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ACF — example
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Qutline

@ Introduction
@ Motivating Example — Leptospirosis
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Motivating Example — Leptospirosis Epidemics

@ Bacterial zoonosis (Leptospira sp)

@ Transmitted to humans through contact with urine from infected
animals (rats in urban setting)

@ Clinical manifestations:

o self-limiting fever, with headache and muscle pain — easily taken for a
bad cold or dengue fever

@ life-threatening disease — kidney failure, pulmonary hemorrhage, Weil's
syndrome

o early treatment! (dialysis mainly)

@ Globally spread, affecting people on all continents — 5-10% mortality
of severe cases; about 607 deaths in 2014

@ Sporadic disease, related with specific occupational exposures and
recreational activities
@ Slums and flooding in urban areas
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eptospirosis & Climate

@ People living in slums — a seroprevalence survey at Pau-da-Lima
(Salvador/BA) indicates 23% at 50 years of age

@ However, not many severe cases (three in 8 years)
@ Severe cases numbers increase during the tropical storms season

@ Reasoning: heavy rainfall cleans out the rats holes, bringing the
Leptospira to the soil surface

@ People clean mud after flooding — large inoculant dose
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The environment
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L eptospirosis & Climate: main questions

@ Does rainfall really lead to severe leptospirosis epidemics?
@ Are other environment factors — humidity & temperature — involved?

@ Is there a threshold?

@ What is the time delay between tropical storms and increase in the
number of cases?

@ duration of incubation period
@ survival of Leptospira on the soil, possibly related to temperature, sun
and moisture
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@ Local epidemiology surveillance system

@ Weekly aggregated cases

@ Climate covariates (per week):

@ temperature (mean and maximum)
@ mean relative humidity
@ accumulated rainfall
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Outline

© Exploratory Analysis
@ Kernel
@ Loess
@ Splines
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Exploratory analysis — The usual

= = Linear Regression
= 5Smoath Lowess
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Max
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0 100 200 300 0 73 80 85 90
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Exploratory analysis — Line Charts

Tuberculosis
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www.cdc.gov/tb/statistics/reports/2010/pdf/Tablel.pdf

MSC (Fiocruz)

Time

19 / 94



Exploratory analysis — Line Charts

Aedes aegypti & rainfall
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Exploratory analysis — Line Charts

Leptospirosis data
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Exploratory analysis — Smoothing

Leptospirosis

30 — =
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Maximum
Temperature
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Exploratory Analysis

Leptospirosis

23 / 94
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Smoothing

@ Moving average — very simple

@ Kernel density — a non-parametric way to estimate the probability
density function of a random variable

@ LOESS or LOWESS - locally weighted scatterplot smoothing

@ Splines — minimisation of an objective function where a trade-off
between fidelity to the data and roughness of the function estimate is

explicit
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Qutline

© Exploratory Analysis
@ Kernel
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Running average

40

35

= Observed counts

Running mean

Weeks
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Kernel — the algorithm

@ Define the kernel function:

@ symmetric

@ unimodal

@ centred on ()

@ going to zero at the edge — neighbourhood

Q Let (z) be the point where to estimate f(.)

© Define the limit of the area of influence of each point — window or
bandwidth

@ This range controls the smoothing parameter of the kernel function

@ Calculate the value of f(x) for each point and connect them.
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Kernel — the function

o =57 S ()

h — bandwidth — can be estimated by cross validation

K — smoothing function
1

V27

Gaussian Kernel: k(z) = exp(1/2x?)
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Kernel — several functions

e r 1 | _ |
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Kernel — Example

Kernel Smooth

Janela

52 sem.
13 sem.
4 sem.

21 sem.

Kernel Chuva
200 300
| |

100
I

Semana
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Kernel — Border effect

Kernel Smooth —- Efeito de Borda

Janela

B 21 sem.
B 6 sem.

Kernel Chuva
200 300
| |

100
I

Semana
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Kernel

@ Advantages: simple, great for exploratory analysis.

@ Problem: border effect.

@ Very sensitive to bandwidth.

@ Automatic choice of bandwidth may not be desirable.

@ Not very sensitive to function shape, as long as it is smooth.
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Qutline

© Exploratory Analysis

@ Loess
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| oess

@ Similar to the kernel, but the base is a local regression instead of a
weighted average

@ At each point (x) and neighbouring points (window or bandwidth) a
polynomial is fitted using weighted least squares, where closer points
are given larger weight

@ The bandwidth or smoothing parameter controls the flexibility of the
regression

@ The degree of the polynomial regression is in general low:

@ A polynomial of degree 0 = running average;
@ First degree = local linear regression
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Exploratory Analysis Loess

Loess — Span & Degree

Loess — Bandwidth e Grau do Polindmio

Loess Chuva
200 300
| |

100
I

Janela e Grau

75% - 20.
75% — Linear (default)
25% - 20.

25% — Linear
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Exploratory Analysis Loess

Loess — Span & Border

Loess — Bandwidth

Loess Chuva
200 300
| |

100
I

Janela
5% (21 sem.)

— 10% (41 sem.)
— 15% (61 sem.)
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| oess

@ Advantages:

@ simple, great for exploratory analysis.
@ Less sensitive to border effect

@ Disadvantages: sensitive to extreme values

MSC (Fiocruz) Time 37 / 94



Comparing

http: //en.wikipedia.org/wiki/Kernel_smoothing
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Fig.: Nearest neighbour
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Exploratory Analysis Loess

Comparing
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Comparing

Local linear
regression result

Fig.: Loess
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Qutline

© Exploratory Analysis

@ Splines
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Splines

@ Splines are smooth polynomial function piecewise-defined

@ Very smooth, including the places where the polynomial pieces or
knots connect

@ Splines do not oscillate ate the edges (Runge's phenomenon present
when using high degree polynomial interpolation)
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Splines

@ A problem of penalised regression: a solution for f(x) that minimises:

Z[?/i—f(fvi)]2+7/ [f"(2)])* dx

where 7 is the smoothing parameter: controls the trade-off between
fidelity to the data and roughness of the function estimate

o If 7=0— f(z) interpolating spline
o If 7is very large, [ [f”(z)]?dz needs to approach zero — linear least
squares estimate

o When 3 [y; — f(2;)]” is replaced by a log-likelihood — penalised
likelihood

@ The smoothing spline is the special case of penalised likelihood
resulting from a Gaussian likelihood
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Splines

@ The choice of the smoothing parameter can be visual or via some
automatic algorithm (e.g. cross validation)

@ The results of splines and loess are similar for similar degrees of
freedom

@ Multivariate splines: n = Bo + fi(xi1, i, - -, Tip) + - - -

@ Several applications to temporal and spatial models

MSC (Fiocruz) Time 44 / 94



Splines — bandwidth
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Splines functions

@ Cubic regression spline — 3" degree polynomial fitted to knots
distributed over the data range

@ Cyclic cubic regression spline — imposes the first and last values to be
equal (interesting for seasonal time series)

@ P-splines — with a differential penalty for adjacent parameters, to
control “wiggliness”

@ Thin plate — the smallest mean square error, smallest number of
parameters, considered the optimal estimator, easily adapted to two
dimensions (space!)

@ Tensor Product — Similar to Thin Plate, better when scale of each
dimension is not the same
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Splines functions
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Choice of function

@ Modelling just one variable — time — not much difference

@ For more then one variable — space — choose carefully:

@ Thin plate:
@ Isotropic,
@ Invariant to rotation
@ smaller square error
@ smaller number of parameters, considered the optimal estimator
@ HOWEVER: sensitive to changes in scale
@ Tensor Product:

@ possible to have different scales
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Exploratory Analysis Splines

Splines functions— summary

bs=  Description Advantages Disadvantages

“tp"  Thin Plate Multiple covariates Computationally intensive
Rotational invariant Varies with
Optimal estimator scale

“tpr' Tensor Product Multiple covariates Varies with
Scale invariant rotation

“cr’  Cubic Computational cheap Only one variable

Regression Parameters directly Based on knots choice

interpretable Non-optimal estimator

“cc”  Cyclic CRS Beginning and end ='s  the same

“ps’  P-splines Any combination of Evenly spaced knots

base and order

Not easily interpretable
Non-optimal estimator
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Exploratory Analysis
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GAM

Outline

© Additive Models
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GAM

The problem

How do these variables behave in relation to each other?

Age — external causes deaths from 5 to 45 years
Income — cardiovascular diseases
Distance to health services — mammography

Adherence to HIV treatment — development of virus resistance

Time — transmissible diseases

e 6 6 6 6 ¢ ¢

Space — vector-borne diseases
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GAM

GAM - definition

@ extension of GLM, where the linear predictor 7 is not limited to linear
regression

@ the model includes any function of the independent covariates (z;):

n = Bo+ filz) + fo(ze) + ...

@ f(x) — can be a non-parametric function such as lowess

@ When to use? When the covariate effect changes depending upon its
value
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GAM

Why not to use

@ Statistical models aim to explain the observed data, not to simply
reproduce it — overfitting

@ Parametric models in general are better to estimate standard errors or
confidence intervals

@ Parametric models are more efficient, if correctly specified (smaller
number of observations)
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Outline

@ Decomposition of time series
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The problem

@ Going back to the leptospirosis example.
@ To estimate the effect of rainfall, humidity and temperature on the
number of cases of leptospirosis

@ Why not just apply a regression model?

@ Irend
@ Seasonality
@ Autocorrelation
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Autocorrelation

@ Autocovariance is the covariance of the variable against a time-shifted
version of itself

Cuw(t, 8) = E[(Xe — pe)(Xs — pis)] — pafis

@ If X (¢) is stationary — s = s = p and
O:E:E(ta 8) — O:mc(ta 8) — Oﬂ?ﬁE(T)

@ Autocorrelation cg; (7) = Cipy(7) /0>
T — the lag
o2 — the variance

@ |t is a measure of how similar a series is to a time-shifted version of
itself

@ Range: [—1,1]
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Autocorrelation
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Seasonality

@ Component of a time series which is defined as the repetitive and
predictable movement around the trend line

@ Not necessarily related to climate seasons
@ Can be either removed or modelled:

@ sinusoid
@ including each month (or season) as a categorical variable
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Seasonality: sinusoid
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Trend

@ A stationary process is a stochastic process whose joint probability
distribution does not change when shifted in time (or space)

@ Mean and variance, if they exist, are constant
@ Trend model: linear (?!7), polynomial, splines

@ Do we really want to remove the trend?
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Modelling time series

@ Time series books — ARIMA models

@ Not much used in epidemiology:

@ Intervention
@ Explanation
@ "Causes”

@ Regression models including (if needed) AR components

@ Emphasis on covariates
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GAM for Time Series

@ T he main idea is to model the effect of covariates on some health
event over time
@ Reasons:

@ allow the inclusion of time dependence
@ non-linear relationship
@ trend and seasonality can be easily incorporated
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GAM for Time Series

@ Considering the response variable a count, the best choices in GLMs
are:
@ Poisson: A\ = expected values and = variance — overdispersion
@ Quasipoisson — it is not a distribution, but a way to relax the previous
assumption and allow for overdispersion. It does not present AlC.

@ Other models, very often used:
@ Negative Binomial — has a mean pu, scale parameter 6 and variance
function V(u) = p + u?/0.
@ Zero-inflated models — mixture models combining a point mass at zero
with a count distribution such as Poisson, geometric or negative
binomial — are available as well (package VGAM)
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GAM for Time Series

Lepto(t) = rain(t—7)+humidity(t—7)+AR(t, t—1)+trend+seasonality+e

@ Trend and seasonality — smooth function
@ Covariates — time lag

@ It is possible to include the variation on the population at risk (offset)
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Lag

Outline

Distributed Lag Models
(5 g
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Lag

Why Distributed Lags?

@ When risk factors and health events are measured on populations:

@ asthma & air pollution
@ cold weather & heart attack
o flooding & leptospirosis

@ Between climate and health event — time interval — lag

@ Questions:

@ How much time after?

@ How long does the effect last?

@ When does the effect disappear?
@ Is there a threshold?
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Lag

Recommended reading

@ Schwartz J. The distributed lag between air pollution and daily
deaths. Epidemiology, 2000;11(3):320-326.

@ Welty, LJ. & Zeger, SL. Are the Acute Effects of Particulate Matter
on Mortality in the National Morbidity, Mortality, and Air Pollution
Study the Result of Inadequate Control for Weather and Season? A
Sensitivity Analysis using Flexible Distributed Lag Models. American

Journal of Epidemiology, 2005;162:(1):80-88.

@ Gasparrini A., Armstrong, B., Kenward M. G. Distributed lag
non-linear models. Statistics in Medicine. 2010; 29(21):2224-2234.

@ Armstrong B. Models for the relationship between ambient
temperature and daily mortality. Epidemiology. 2010, 17(6):624-631.
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Lag

Problems

@ Effects change over time — increasing and decreasing
@ Covariates — temperature, humidity, rainfall and pollution — highly
correlated

@ Possible non-linear structure
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Lag

Effect throughout time

@ In a linear model the sum of the effect of all independent variables,
shifted by each time lag, is associated with the outcome

y(t) =v+ Boxe + frae—1 + Pai—o + ... + Brz—k + ¢ (1)

@ Supposing that the number of events in a week follows the rainfall
one week before

@ This number increases up to two weeks after, and decreases smoothly
up to the 5™ lag, the graphic of the 8's of the model would present a
curve such as:
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Effect throughout time

Lag
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A hypothesized curve showing the impact of an environmental toxin over time. The effect rises,
and then falls, possibly with a long tail. The goal of this analysis is to determine what the actual

shape of the curve representing the time course of deaths after exposure to PM10 is.
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Lag

Alternative models

@ Running average of the predictor — the shape of increase and
decrease cannot be observed

@ One parameter for each lag — no supposition about the shape of the
curve

@ To restrict the parameters to a specific shape — PDL (Polynomial
Distributed Lag)

@ To combine possible non linear effects with lag — DLNM (Distributed
lag non-linear models)
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Lag

Effect throughout time

@ We use a transformation to represent the accumulated effect of X,
weighted by a polynomial (2°degree)
@ With this transformation of X = Z:

@ colinearity disappears
@ the shape induced on the relationship (in the example quadratic),
imposes a restriction on the parameters

@ After estimation of the parameters o of z, parameters 5 for X are
obtained via back transformation

@ The error of o goes back as well to 3
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Lag

When the effect is non-linear

@ The solution is a combination of splines and lags

@ cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

@ The idea is to specify two independent set of base functions

@ PDL is a particular cases of DLNM, with a linear predictor
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Lag

When the effect is non-linear

@ The solution is a combination of splines e lags

@ cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

@ The idea is to specify two independent set of base functions

@ PDL is a particular cases of DLNM, with a linear predictor
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Lag

How to interpret

@ A grid is built on possible predicted values over time

@ It is possible to evaluate the effect of a given value of the predictor
over time — cut-points

@ Or observe on each lag the shape of the relationship between
predictor and outcome

@ |t is also possible to estimate the cumulative effect over time for
values of the predictor

MSC (Fiocruz) Time 78 / 94



Lag

Rainfall & Leptospirosis
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Outline

© Modelling
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Models for Time Series

@ ARIMA or SARIMA models: regression models where independent
variables are just a shifted version of the dependent variable.

@ Stationary time series:

@ stochastic process whose joint probability distribution does not change
when shifted in time or space

@ mean and variance do not change over time or position

@ removing trend and seasonality (S and | terms)

detection of order of autoregressive and moving average terms
fit, evaluation, ...

prediction

e 66 ¢ ¢

Dynamic models!
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Modelling for:

@ Explaining why events happen this way over time:

@ Independent variables are associated with events y in ¢ — regression
@ Past events are “cause” of present events ¢ — dynamic models

@ How to predict t + k7
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Exploratory analysis

Number of
Cases

Rainfall

Relative
Humidity

Maximum
Temperature
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Exploratory analysis — trend

Number of Predicted Cases
1.5 2.0 25
|
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I I I I I I I I I I I I I I I
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Weeks
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Colinearity
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Colinearity
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Colinearity
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Structure

@ Autocorrelation

@ Components
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TS Components
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Modelling

Functional form
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Seasonality

@ Exclude the seasonality of the independent variables using sinusoid
functions.

@ Use the residuals of this seasonal model as independent variables
@ Include a seasonal term in the complete model

@ Interpretation is the same, as the residuals keep the same measure
unit: the meaning of the parameter estimated is the same
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Multiple model

@ Test the significance of each time lag, respecting the functional form
@ Join all lags and covariates

@ When the functional form is not linear — categorise, segmented
regression, CART model (Classification and regression trees)

@ Splines & PDL
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Modelling

Residuals

@ ACF of residuals again
@ still trend?

@ inclusion of AR term
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Modelling

Summary

@ Counts: Poisson, Quasipoisson or Negative Binomial —
overdispersion!

@ Trend and seasonality — s(tempo) e s(tempo, k=52)
@ Removal of seasonality of independent variables

@ Regression model

gam(cases ~ offset(log(pop)) + s(time) +
sin(2*pix(1:\text{length(dataset)}/52.14) +
covs + lag(cases, 1),
family=negbin(c(1,10), data=dataset)
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