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Introduction

Statistical Analysis

Exploratory Analysis to:

describe the data
support the selection of appropriate statistical techniques

Hypothesis testing:

Does this observed pattern differ from... ?

Modelling:

What is the effect of rainfall, humidity and temperature on the number
of cases of malaria?
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Introduction
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Introduction

Time Series

A sequence of data points, measured typically at successive points in
time spaced at uniform time intervals

Time series analysis → methods for analysing time series data in
order to extract meaningful statistics

Natural temporal ordering can result in serial dependence →
dependence of each time point on previous points

Components:

Trend
Seasonality and cyclical patterns
Time dependence structure
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Introduction

Time dependence structure: autocorrelation

Autocorrelation (or autocovariance) is a measure of similarity of the
event over time with itself previously

It is the correlation between values of a random process at different
times

rk =

∑
k (xt − x̄ )(xt−k − x̄ )∑

(xt − x̄ )2

It is a tool to depict the structure of the time series
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Introduction

ACF – example
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Introduction

ACF – example
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Introduction Motivating Example – Leptospirosis
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Introduction Motivating Example – Leptospirosis

Motivating Example – Leptospirosis Epidemics

Bacterial zoonosis (Leptospira sp)

Transmitted to humans through contact with urine from infected
animals (rats in urban setting)

Clinical manifestations:

self-limiting fever, with headache and muscle pain → easily taken for a
bad cold or dengue fever
life-threatening disease → kidney failure, pulmonary hemorrhage, Weil’s
syndrome
early treatment! (dialysis mainly)

Globally spread, affecting people on all continents – 5-10% mortality
of severe cases; about 607 deaths in 2014

Sporadic disease, related with specific occupational exposures and
recreational activities
Slums and flooding in urban areas
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Introduction Motivating Example – Leptospirosis

Leptospirosis & Climate

People living in slums → a seroprevalence survey at Pau-da-Lima
(Salvador/BA) indicates 23% at 50 years of age

However, not many severe cases (three in 8 years)

Severe cases numbers increase during the tropical storms season

Reasoning: heavy rainfall cleans out the rats holes, bringing the
Leptospira to the soil surface

People clean mud after flooding → large inoculant dose
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Introduction Motivating Example – Leptospirosis

Leptospirosis & Climate: main questions

Does rainfall really lead to severe leptospirosis epidemics?

Are other environment factors – humidity & temperature – involved?

Is there a threshold?

What is the time delay between tropical storms and increase in the
number of cases?

duration of incubation period
survival of Leptospira on the soil, possibly related to temperature, sun
and moisture
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Introduction Motivating Example – Leptospirosis

Data

Local epidemiology surveillance system

Weekly aggregated cases

Climate covariates (per week):

temperature (mean and maximum)
mean relative humidity
accumulated rainfall
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Exploratory Analysis
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Exploratory Analysis

Exploratory analysis – The usual
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Exploratory Analysis

Exploratory analysis – Line Charts

Tuberculosis
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Exploratory Analysis

Exploratory analysis – Line Charts

Aedes aegypti & rainfall
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Exploratory Analysis

Exploratory analysis – Line Charts

Leptospirosis data
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Exploratory Analysis

Exploratory analysis – Smoothing

Leptospirosis
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Exploratory Analysis

Exploratory analysis – Smoothing

Leptospirosis
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Exploratory Analysis

Smoothing

Moving average – very simple

Kernel density – a non-parametric way to estimate the probability
density function of a random variable

LOESS or LOWESS – locally weighted scatterplot smoothing

Splines – minimisation of an objective function where a trade-off
between fidelity to the data and roughness of the function estimate is
explicit
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Exploratory Analysis Kernel

Outline

2 Exploratory Analysis
Kernel
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Exploratory Analysis Kernel

Running average
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Exploratory Analysis Kernel

Kernel – the algorithm

1 Define the kernel function:

symmetric
unimodal
centred on (x )
going to zero at the edge – neighbourhood

2 Let (x ) be the point where to estimate f (.)

3 Define the limit of the area of influence of each point → window or
bandwidth

4 This range controls the smoothing parameter of the kernel function

5 Calculate the value of f (x ) for each point and connect them.
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Exploratory Analysis Kernel

Kernel – the function

f̂h(x ) =
1

Nh

∑
K

(
x − xi

h

)

h → bandwidth – can be estimated by cross validation

K → smoothing function

Gaussian Kernel: k(x ) =
1√
2π

exp(1/2x 2)
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Exploratory Analysis Kernel

Kernel – several functions
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Exploratory Analysis Kernel

Kernel – Example
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Exploratory Analysis Kernel

Kernel – Border effect
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Exploratory Analysis Kernel

Kernel

Advantages: simple, great for exploratory analysis.

Problem: border effect.

Very sensitive to bandwidth.

Automatic choice of bandwidth may not be desirable.

Not very sensitive to function shape, as long as it is smooth.
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Exploratory Analysis Loess

Outline

2 Exploratory Analysis
Kernel
Loess
Splines
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Exploratory Analysis Loess

Loess

Similar to the kernel, but the base is a local regression instead of a
weighted average

At each point (x ) and neighbouring points (window or bandwidth) a
polynomial is fitted using weighted least squares¸ where closer points
are given larger weight

The bandwidth or smoothing parameter controls the flexibility of the
regression

The degree of the polynomial regression is in general low:

A polynomial of degree 0 = running average;
First degree = local linear regression
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Exploratory Analysis Loess

Loess – Span & Degree
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Exploratory Analysis Loess

Loess – Span & Border
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Exploratory Analysis Loess

Loess

Advantages:

simple, great for exploratory analysis.
Less sensitive to border effect

Disadvantages: sensitive to extreme values
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Exploratory Analysis Loess

Comparing

http://en.wikipedia.org/wiki/Kernel smoothing

Fig.: Nearest neighbour
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Exploratory Analysis Loess

Comparing

Fig.: Weighted average
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Exploratory Analysis Loess

Comparing

Fig.: Loess
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Exploratory Analysis Splines

Outline

2 Exploratory Analysis
Kernel
Loess
Splines
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Exploratory Analysis Splines

Splines

Splines are smooth polynomial function piecewise-defined

Very smooth, including the places where the polynomial pieces or
knots connect

Splines do not oscillate ate the edges (Runge’s phenomenon present
when using high degree polynomial interpolation)
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Exploratory Analysis Splines

Splines

A problem of penalised regression: a solution for f̂ (x ) that minimises:

∑
[yi − f (xi )]

2 + τ

∫
[f ′′(x )]2dx

where τ is the smoothing parameter: controls the trade-off between
fidelity to the data and roughness of the function estimate

If τ = 0 → f̂ (x ) interpolating spline
If τ is very large,

∫
[f ′′(x )]2dx needs to approach zero → linear least

squares estimate

When
∑

[yi − f (xi )]
2 is replaced by a log-likelihood → penalised

likelihood

The smoothing spline is the special case of penalised likelihood
resulting from a Gaussian likelihood
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Exploratory Analysis Splines

Splines

The choice of the smoothing parameter can be visual or via some
automatic algorithm (e.g. cross validation)

The results of splines and loess are similar for similar degrees of
freedom

Multivariate splines: η = β0 + f1(xi1, xi2, . . . , xip) + . . .

Several applications to temporal and spatial models
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Exploratory Analysis Splines

Splines – bandwidth
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Exploratory Analysis Splines

Splines functions

Cubic regression spline – 3rd degree polynomial fitted to knots
distributed over the data range

Cyclic cubic regression spline – imposes the first and last values to be
equal (interesting for seasonal time series)

P-splines – with a differential penalty for adjacent parameters, to
control “wiggliness”

Thin plate – the smallest mean square error, smallest number of
parameters, considered the optimal estimator, easily adapted to two
dimensions (space!)

Tensor Product – Similar to Thin Plate, better when scale of each
dimension is not the same
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Exploratory Analysis Splines

Splines functions
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Exploratory Analysis Splines

Choice of function

Modelling just one variable – time – not much difference

For more then one variable – space – choose carefully:

Thin plate:

isotropic,
invariant to rotation
smaller square error
smaller number of parameters, considered the optimal estimator
HOWEVER: sensitive to changes in scale

Tensor Product:

possible to have different scales
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Exploratory Analysis Splines

Splines functions– summary

bs= Description Advantages Disadvantages
“tp” Thin Plate Multiple covariates Computationally intensive

Rotational invariant Varies with
Optimal estimator scale

“tpr’ Tensor Product Multiple covariates Varies with
Scale invariant rotation

“cr” Cubic Computational cheap Only one variable
Regression Parameters directly Based on knots choice

interpretable Non-optimal estimator
“cc” Cyclic CRS Beginning and end =’s the same
“ps” P-splines Any combination of Evenly spaced knots

base and order Not easily interpretable
Non-optimal estimator
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Exploratory Analysis Splines

Bivariate spline
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Exploratory Analysis Splines

Changing the scale
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GAM

The problem

How do these variables behave in relation to each other?

Age → external causes deaths from 5 to 45 years

Income → cardiovascular diseases

Distance to health services → mammography

Adherence to HIV treatment → development of virus resistance

...

Time → transmissible diseases

Space → vector-borne diseases
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GAM

GAM – definition

extension of GLM, where the linear predictor η is not limited to linear
regression

the model includes any function of the independent covariates (xi ):

η = β0 + f1(x1) + f2(x2) + . . .

f (x ) → can be a non-parametric function such as lowess

When to use? When the covariate effect changes depending upon its
value
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GAM

Why not to use

Statistical models aim to explain the observed data, not to simply
reproduce it – overfitting

Parametric models in general are better to estimate standard errors or
confidence intervals

Parametric models are more efficient, if correctly specified (smaller
number of observations)
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Decomposition TS

The problem

Going back to the leptospirosis example.

To estimate the effect of rainfall, humidity and temperature on the
number of cases of leptospirosis

Why not just apply a regression model?

Trend
Seasonality
Autocorrelation
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Decomposition TS

Autocorrelation

Autocovariance is the covariance of the variable against a time-shifted
version of itself

Cxx (t , s) = E [(Xt − μt)(Xs − μs)]− μtμs

If X (t) is stationary → μt = μs = μ and

Cxx (t , s) = Cxx (t , s) = Cxx (τ)

Autocorrelation cxx (τ) = Cxx (τ)/σ
2

τ → the lag
σ2 → the variance

It is a measure of how similar a series is to a time-shifted version of
itself

Range: [−1, 1]
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Decomposition TS

Autocorrelation
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Decomposition TS

Seasonality

Component of a time series which is defined as the repetitive and
predictable movement around the trend line

Not necessarily related to climate seasons

Can be either removed or modelled:

sinusoid
including each month (or season) as a categorical variable
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Decomposition TS

Seasonality: sinusoid
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Decomposition TS

Seasonality: sinusoid
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Decomposition TS

Trend

A stationary process is a stochastic process whose joint probability
distribution does not change when shifted in time (or space)

Mean and variance, if they exist, are constant

Trend model: linear (?!?), polynomial, splines

Do we really want to remove the trend?
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Decomposition TS

Modelling time series

Time series books – ARIMA models

Not much used in epidemiology:

Intervention
Explanation
“Causes”

Regression models including (if needed) AR components

Emphasis on covariates
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Decomposition TS

GAM for Time Series

The main idea is to model the effect of covariates on some health
event over time

Reasons:

allow the inclusion of time dependence
non-linear relationship
trend and seasonality can be easily incorporated
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Decomposition TS

GAM for Time Series

Considering the response variable a count, the best choices in GLMs
are:

Poisson: λ = expected values and = variance → overdispersion
Quasipoisson – it is not a distribution, but a way to relax the previous
assumption and allow for overdispersion. It does not present AIC.

Other models, very often used:

Negative Binomial – has a mean μ, scale parameter θ and variance
function V (μ) = μ+ μ2/θ.
Zero-inflated models – mixture models combining a point mass at zero
with a count distribution such as Poisson, geometric or negative
binomial – are available as well (package VGAM)
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Decomposition TS

GAM for Time Series

Lepto(t) = rain(t−?)+humidity(t−?)+AR(t , t−1)+trend+seasonality+ε

Trend and seasonality → smooth function

Covariates – time lag

It is possible to include the variation on the population at risk (offset)
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Lag

Outline

5 Distributed Lag Models

6 Modelling
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Lag

Why Distributed Lags?

When risk factors and health events are measured on populations:

asthma & air pollution
cold weather & heart attack
flooding & leptospirosis

Between climate and health event → time interval – lag

Questions:

How much time after?
How long does the effect last?
When does the effect disappear?
Is there a threshold?
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Lag

Recommended reading

Schwartz J. The distributed lag between air pollution and daily
deaths.Epidemiology, 2000;11(3):320-326.

Welty, LJ. & Zeger, SL. Are the Acute Effects of Particulate Matter
on Mortality in the National Morbidity, Mortality, and Air Pollution
Study the Result of Inadequate Control for Weather and Season? A
Sensitivity Analysis using Flexible Distributed Lag Models. American
Journal of Epidemiology, 2005;162:(1):80-88.

Gasparrini A., Armstrong, B., Kenward M. G. Distributed lag
non-linear models. Statistics in Medicine. 2010; 29(21):2224-2234.

Armstrong B. Models for the relationship between ambient
temperature and daily mortality. Epidemiology. 2010, 17(6):624-631.
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Lag

Problems

Effects change over time – increasing and decreasing

Covariates – temperature, humidity, rainfall and pollution – highly
correlated

Possible non-linear structure
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Lag

Effect throughout time

In a linear model the sum of the effect of all independent variables,
shifted by each time lag, is associated with the outcome

y(t) = ν + β0xt + β1xt−1 + β2xt−2 + . . .+ βkxt−k + εt (1)

Supposing that the number of events in a week follows the rainfall
one week before

This number increases up to two weeks after, and decreases smoothly
up to the 5th lag, the graphic of the β’s of the model would present a
curve such as:
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Lag

Effect throughout time
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Lag

Alternative models

Running average of the predictor → the shape of increase and
decrease cannot be observed

One parameter for each lag → no supposition about the shape of the
curve

To restrict the parameters to a specific shape → PDL (Polynomial
Distributed Lag)

To combine possible non linear effects with lag → DLNM (Distributed
lag non-linear models)
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Lag

Effect throughout time

We use a transformation to represent the accumulated effect of X ,
weighted by a polynomial (2 degree)

With this transformation of X ⇒ Z :

colinearity disappears
the shape induced on the relationship (in the example quadratic),
imposes a restriction on the parameters

After estimation of the parameters α of z , parameters β for X are
obtained via back transformation

The error of α goes back as well to β
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Lag

When the effect is non-linear

The solution is a combination of splines and lags

cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

The idea is to specify two independent set of base functions

PDL is a particular cases of DLNM, with a linear predictor
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Lag

When the effect is non-linear

The solution is a combination of splines e lags

cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

The idea is to specify two independent set of base functions

PDL is a particular cases of DLNM, with a linear predictor
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Lag

How to interpret

A grid is built on possible predicted values over time

It is possible to evaluate the effect of a given value of the predictor
over time → cut-points

Or observe on each lag the shape of the relationship between
predictor and outcome

It is also possible to estimate the cumulative effect over time for
values of the predictor
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Lag

Rainfall & Leptospirosis
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Modelling

Outline

6 Modelling
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Modelling

Models for Time Series

ARIMA or SARIMA models: regression models where independent
variables are just a shifted version of the dependent variable.

Stationary time series:

stochastic process whose joint probability distribution does not change
when shifted in time or space
mean and variance do not change over time or position
removing trend and seasonality (S and I terms)

detection of order of autoregressive and moving average terms

fit, evaluation, ...

prediction

Dynamic models!
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Modelling

Modelling for:

Explaining why events happen this way over time:

Independent variables are associated with events y in t → regression
Past events are“cause”of present events t → dynamic models

How to predict t + k?
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Modelling

Exploratory analysis
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Modelling

Exploratory analysis – trend
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Modelling

Colinearity
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Modelling

Colinearity
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Modelling

Colinearity
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Modelling

Structure

Autocorrelation

Components
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Modelling

TS Components

Fig.: Maximum temperature
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Modelling

Functional form
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Modelling

Seasonality

Exclude the seasonality of the independent variables using sinusoid
functions.

Use the residuals of this seasonal model as independent variables

Include a seasonal term in the complete model

Interpretation is the same, as the residuals keep the same measure
unit: the meaning of the parameter estimated is the same
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Modelling

Multiple model

Test the significance of each time lag, respecting the functional form

Join all lags and covariates

When the functional form is not linear → categorise, segmented
regression, CART model (Classification and regression trees)

Splines & PDL
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Modelling

Residuals

ACF of residuals again

still trend?

inclusion of AR term
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Modelling

Summary

Counts: Poisson, Quasipoisson or Negative Binomial →
overdispersion!

Trend and seasonality → s(tempo) e s(tempo, k=52)

Removal of seasonality of independent variables

Regression model

gam(cases ~ offset(log(pop)) + s(time) +

sin(2*pi*(1:\text{length(dataset)}/52.14) +

covs + lag(cases, 1),

family=negbin(c(1,10), data=dataset)
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Introduction
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1 Introduction
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Introduction

Statistical Analysis

Exploratory Analysis to:

describe the data
support the selection of appropriate statistical techniques

Hypothesis testing:

Does this observed pattern differ from... ?

Modelling:

What is the effect of rainfall, humidity and temperature on the number
of cases of malaria?
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Introduction
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Introduction

Time Series

A sequence of data points, measured typically at successive points in
time spaced at uniform time intervals

Time series analysis → methods for analysing time series data in
order to extract meaningful statistics

Natural temporal ordering can result in serial dependence →
dependence of each time point on previous points

Components:

Trend
Seasonality and cyclical patterns
Time dependence structure
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Introduction

Time dependence structure: autocorrelation

Autocorrelation (or autocovariance) is a measure of similarity of the
event over time with itself previously

It is the correlation between values of a random process at different
times

rk =

∑
k (xt − x̄ )(xt−k − x̄ )∑

(xt − x̄ )2

It is a tool to depict the structure of the time series
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Introduction

ACF – example
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Introduction

ACF – example
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Introduction Motivating Example – Leptospirosis

Outline

1 Introduction
Motivating Example – Leptospirosis
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Introduction Motivating Example – Leptospirosis

Motivating Example – Leptospirosis Epidemics

Bacterial zoonosis (Leptospira sp)

Transmitted to humans through contact with urine from infected
animals (rats in urban setting)

Clinical manifestations:

self-limiting fever, with headache and muscle pain → easily taken for a
bad cold or dengue fever
life-threatening disease → kidney failure, pulmonary hemorrhage, Weil’s
syndrome
early treatment! (dialysis mainly)

Globally spread, affecting people on all continents – 5-10% mortality
of severe cases; about 607 deaths in 2014

Sporadic disease, related with specific occupational exposures and
recreational activities
Slums and flooding in urban areas
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Introduction Motivating Example – Leptospirosis

Leptospirosis & Climate

People living in slums → a seroprevalence survey at Pau-da-Lima
(Salvador/BA) indicates 23% at 50 years of age

However, not many severe cases (three in 8 years)

Severe cases numbers increase during the tropical storms season

Reasoning: heavy rainfall cleans out the rats holes, bringing the
Leptospira to the soil surface

People clean mud after flooding → large inoculant dose
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Introduction Motivating Example – Leptospirosis

Leptospirosis & Climate: main questions

Does rainfall really lead to severe leptospirosis epidemics?

Are other environment factors – humidity & temperature – involved?

Is there a threshold?

What is the time delay between tropical storms and increase in the
number of cases?

duration of incubation period
survival of Leptospira on the soil, possibly related to temperature, sun
and moisture
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Introduction Motivating Example – Leptospirosis

Data

Local epidemiology surveillance system

Weekly aggregated cases

Climate covariates (per week):

temperature (mean and maximum)
mean relative humidity
accumulated rainfall
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Exploratory Analysis

Outline

2 Exploratory Analysis
Kernel
Loess
Splines
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Exploratory Analysis

Exploratory analysis – The usual
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Exploratory Analysis

Exploratory analysis – Line Charts

Tuberculosis
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Exploratory Analysis

Exploratory analysis – Line Charts

Aedes aegypti & rainfall
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Exploratory Analysis

Exploratory analysis – Line Charts

Leptospirosis data

MSC (Fiocruz) Time 21 / 94



Exploratory Analysis

Exploratory analysis – Smoothing

Leptospirosis
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Exploratory Analysis

Exploratory analysis – Smoothing

Leptospirosis
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Exploratory Analysis

Smoothing

Moving average – very simple

Kernel density – a non-parametric way to estimate the probability
density function of a random variable

LOESS or LOWESS – locally weighted scatterplot smoothing

Splines – minimisation of an objective function where a trade-off
between fidelity to the data and roughness of the function estimate is
explicit
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Exploratory Analysis Kernel

Outline

2 Exploratory Analysis
Kernel
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Exploratory Analysis Kernel

Running average

MSC (Fiocruz) Time 26 / 94



Exploratory Analysis Kernel

Kernel – the algorithm

1 Define the kernel function:

symmetric
unimodal
centred on (x )
going to zero at the edge – neighbourhood

2 Let (x ) be the point where to estimate f (.)

3 Define the limit of the area of influence of each point → window or
bandwidth

4 This range controls the smoothing parameter of the kernel function

5 Calculate the value of f (x ) for each point and connect them.
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Exploratory Analysis Kernel

Kernel – the function

f̂h(x ) =
1

Nh

∑
K

(
x − xi

h

)

h → bandwidth – can be estimated by cross validation

K → smoothing function

Gaussian Kernel: k(x ) =
1√
2π

exp(1/2x 2)
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Exploratory Analysis Kernel

Kernel – several functions
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Exploratory Analysis Kernel

Kernel – Example
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Exploratory Analysis Kernel

Kernel – Border effect
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Exploratory Analysis Kernel

Kernel

Advantages: simple, great for exploratory analysis.

Problem: border effect.

Very sensitive to bandwidth.

Automatic choice of bandwidth may not be desirable.

Not very sensitive to function shape, as long as it is smooth.
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Exploratory Analysis Loess

Outline

2 Exploratory Analysis
Kernel
Loess
Splines
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Exploratory Analysis Loess

Loess

Similar to the kernel, but the base is a local regression instead of a
weighted average

At each point (x ) and neighbouring points (window or bandwidth) a
polynomial is fitted using weighted least squares¸ where closer points
are given larger weight

The bandwidth or smoothing parameter controls the flexibility of the
regression

The degree of the polynomial regression is in general low:

A polynomial of degree 0 = running average;
First degree = local linear regression
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Exploratory Analysis Loess

Loess – Span & Degree
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Exploratory Analysis Loess

Loess – Span & Border
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Exploratory Analysis Loess

Loess

Advantages:

simple, great for exploratory analysis.
Less sensitive to border effect

Disadvantages: sensitive to extreme values
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Exploratory Analysis Loess

Comparing

http://en.wikipedia.org/wiki/Kernel smoothing

Fig.: Nearest neighbour
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Exploratory Analysis Loess

Comparing

Fig.: Weighted average
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Exploratory Analysis Loess

Comparing

Fig.: Loess
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Exploratory Analysis Splines

Outline

2 Exploratory Analysis
Kernel
Loess
Splines
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Exploratory Analysis Splines

Splines

Splines are smooth polynomial function piecewise-defined

Very smooth, including the places where the polynomial pieces or
knots connect

Splines do not oscillate ate the edges (Runge’s phenomenon present
when using high degree polynomial interpolation)
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Exploratory Analysis Splines

Splines

A problem of penalised regression: a solution for f̂ (x ) that minimises:

∑
[yi − f (xi )]

2 + τ

∫
[f ′′(x )]2dx

where τ is the smoothing parameter: controls the trade-off between
fidelity to the data and roughness of the function estimate

If τ = 0 → f̂ (x ) interpolating spline
If τ is very large,

∫
[f ′′(x )]2dx needs to approach zero → linear least

squares estimate

When
∑

[yi − f (xi )]
2 is replaced by a log-likelihood → penalised

likelihood

The smoothing spline is the special case of penalised likelihood
resulting from a Gaussian likelihood
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Exploratory Analysis Splines

Splines

The choice of the smoothing parameter can be visual or via some
automatic algorithm (e.g. cross validation)

The results of splines and loess are similar for similar degrees of
freedom

Multivariate splines: η = β0 + f1(xi1, xi2, . . . , xip) + . . .

Several applications to temporal and spatial models
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Exploratory Analysis Splines

Splines – bandwidth
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Exploratory Analysis Splines

Splines functions

Cubic regression spline – 3rd degree polynomial fitted to knots
distributed over the data range

Cyclic cubic regression spline – imposes the first and last values to be
equal (interesting for seasonal time series)

P-splines – with a differential penalty for adjacent parameters, to
control “wiggliness”

Thin plate – the smallest mean square error, smallest number of
parameters, considered the optimal estimator, easily adapted to two
dimensions (space!)

Tensor Product – Similar to Thin Plate, better when scale of each
dimension is not the same
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Exploratory Analysis Splines

Splines functions
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Exploratory Analysis Splines

Choice of function

Modelling just one variable – time – not much difference

For more then one variable – space – choose carefully:

Thin plate:

isotropic,
invariant to rotation
smaller square error
smaller number of parameters, considered the optimal estimator
HOWEVER: sensitive to changes in scale

Tensor Product:

possible to have different scales
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Exploratory Analysis Splines

Splines functions– summary

bs= Description Advantages Disadvantages
“tp” Thin Plate Multiple covariates Computationally intensive

Rotational invariant Varies with
Optimal estimator scale

“tpr’ Tensor Product Multiple covariates Varies with
Scale invariant rotation

“cr” Cubic Computational cheap Only one variable
Regression Parameters directly Based on knots choice

interpretable Non-optimal estimator
“cc” Cyclic CRS Beginning and end =’s the same
“ps” P-splines Any combination of Evenly spaced knots

base and order Not easily interpretable
Non-optimal estimator

MSC (Fiocruz) Time 49 / 94



Exploratory Analysis Splines

Bivariate spline
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Exploratory Analysis Splines

Changing the scale
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GAM

Outline

3 Additive Models

4 Decomposition of time series

5 Distributed Lag Models

6 Modelling
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GAM

The problem

How do these variables behave in relation to each other?

Age → external causes deaths from 5 to 45 years

Income → cardiovascular diseases

Distance to health services → mammography

Adherence to HIV treatment → development of virus resistance

...

Time → transmissible diseases

Space → vector-borne diseases
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GAM

GAM – definition

extension of GLM, where the linear predictor η is not limited to linear
regression

the model includes any function of the independent covariates (xi ):

η = β0 + f1(x1) + f2(x2) + . . .

f (x ) → can be a non-parametric function such as lowess

When to use? When the covariate effect changes depending upon its
value
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GAM

Why not to use

Statistical models aim to explain the observed data, not to simply
reproduce it – overfitting

Parametric models in general are better to estimate standard errors or
confidence intervals

Parametric models are more efficient, if correctly specified (smaller
number of observations)
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Decomposition TS

Outline

1 Introduction
Motivating Example – Leptospirosis

2 Exploratory Analysis
Kernel
Loess
Splines

3 Additive Models

4 Decomposition of time series

5 Distributed Lag Models

6 Modelling
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Decomposition TS

The problem

Going back to the leptospirosis example.

To estimate the effect of rainfall, humidity and temperature on the
number of cases of leptospirosis

Why not just apply a regression model?

Trend
Seasonality
Autocorrelation
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Decomposition TS

Autocorrelation

Autocovariance is the covariance of the variable against a time-shifted
version of itself

Cxx (t , s) = E [(Xt − μt)(Xs − μs)]− μtμs

If X (t) is stationary → μt = μs = μ and

Cxx (t , s) = Cxx (t , s) = Cxx (τ)

Autocorrelation cxx (τ) = Cxx (τ)/σ
2

τ → the lag
σ2 → the variance

It is a measure of how similar a series is to a time-shifted version of
itself

Range: [−1, 1]

MSC (Fiocruz) Time 58 / 94



Decomposition TS

Autocorrelation
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Decomposition TS

Seasonality

Component of a time series which is defined as the repetitive and
predictable movement around the trend line

Not necessarily related to climate seasons

Can be either removed or modelled:

sinusoid
including each month (or season) as a categorical variable
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Decomposition TS

Seasonality: sinusoid
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Decomposition TS

Seasonality: sinusoid
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Decomposition TS

Trend

A stationary process is a stochastic process whose joint probability
distribution does not change when shifted in time (or space)

Mean and variance, if they exist, are constant

Trend model: linear (?!?), polynomial, splines

Do we really want to remove the trend?
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Decomposition TS

Modelling time series

Time series books – ARIMA models

Not much used in epidemiology:

Intervention
Explanation
“Causes”

Regression models including (if needed) AR components

Emphasis on covariates
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Decomposition TS

GAM for Time Series

The main idea is to model the effect of covariates on some health
event over time

Reasons:

allow the inclusion of time dependence
non-linear relationship
trend and seasonality can be easily incorporated
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Decomposition TS

GAM for Time Series

Considering the response variable a count, the best choices in GLMs
are:

Poisson: λ = expected values and = variance → overdispersion
Quasipoisson – it is not a distribution, but a way to relax the previous
assumption and allow for overdispersion. It does not present AIC.

Other models, very often used:

Negative Binomial – has a mean μ, scale parameter θ and variance
function V (μ) = μ+ μ2/θ.
Zero-inflated models – mixture models combining a point mass at zero
with a count distribution such as Poisson, geometric or negative
binomial – are available as well (package VGAM)
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Decomposition TS

GAM for Time Series

Lepto(t) = rain(t−?)+humidity(t−?)+AR(t , t−1)+trend+seasonality+ε

Trend and seasonality → smooth function

Covariates – time lag

It is possible to include the variation on the population at risk (offset)
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Lag

Outline

5 Distributed Lag Models

6 Modelling

MSC (Fiocruz) Time 68 / 94



Lag

Why Distributed Lags?

When risk factors and health events are measured on populations:

asthma & air pollution
cold weather & heart attack
flooding & leptospirosis

Between climate and health event → time interval – lag

Questions:

How much time after?
How long does the effect last?
When does the effect disappear?
Is there a threshold?
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Lag

Recommended reading

Schwartz J. The distributed lag between air pollution and daily
deaths.Epidemiology, 2000;11(3):320-326.

Welty, LJ. & Zeger, SL. Are the Acute Effects of Particulate Matter
on Mortality in the National Morbidity, Mortality, and Air Pollution
Study the Result of Inadequate Control for Weather and Season? A
Sensitivity Analysis using Flexible Distributed Lag Models. American
Journal of Epidemiology, 2005;162:(1):80-88.

Gasparrini A., Armstrong, B., Kenward M. G. Distributed lag
non-linear models. Statistics in Medicine. 2010; 29(21):2224-2234.

Armstrong B. Models for the relationship between ambient
temperature and daily mortality. Epidemiology. 2010, 17(6):624-631.
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Lag

Problems

Effects change over time – increasing and decreasing

Covariates – temperature, humidity, rainfall and pollution – highly
correlated

Possible non-linear structure
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Lag

Effect throughout time

In a linear model the sum of the effect of all independent variables,
shifted by each time lag, is associated with the outcome

y(t) = ν + β0xt + β1xt−1 + β2xt−2 + . . .+ βkxt−k + εt (1)

Supposing that the number of events in a week follows the rainfall
one week before

This number increases up to two weeks after, and decreases smoothly
up to the 5th lag, the graphic of the β’s of the model would present a
curve such as:
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Lag

Effect throughout time
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Lag

Alternative models

Running average of the predictor → the shape of increase and
decrease cannot be observed

One parameter for each lag → no supposition about the shape of the
curve

To restrict the parameters to a specific shape → PDL (Polynomial
Distributed Lag)

To combine possible non linear effects with lag → DLNM (Distributed
lag non-linear models)
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Lag

Effect throughout time

We use a transformation to represent the accumulated effect of X ,
weighted by a polynomial (2 degree)

With this transformation of X ⇒ Z :

colinearity disappears
the shape induced on the relationship (in the example quadratic),
imposes a restriction on the parameters

After estimation of the parameters α of z , parameters β for X are
obtained via back transformation

The error of α goes back as well to β
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Lag

When the effect is non-linear

The solution is a combination of splines and lags

cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

The idea is to specify two independent set of base functions

PDL is a particular cases of DLNM, with a linear predictor
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Lag

When the effect is non-linear

The solution is a combination of splines e lags

cross-basis: a bidimensional space of functions describing
simultaneously the shape and the effect distributed over time

The idea is to specify two independent set of base functions

PDL is a particular cases of DLNM, with a linear predictor
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Lag

How to interpret

A grid is built on possible predicted values over time

It is possible to evaluate the effect of a given value of the predictor
over time → cut-points

Or observe on each lag the shape of the relationship between
predictor and outcome

It is also possible to estimate the cumulative effect over time for
values of the predictor
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Lag

Rainfall & Leptospirosis
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Modelling

Outline

6 Modelling
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Modelling

Models for Time Series

ARIMA or SARIMA models: regression models where independent
variables are just a shifted version of the dependent variable.

Stationary time series:

stochastic process whose joint probability distribution does not change
when shifted in time or space
mean and variance do not change over time or position
removing trend and seasonality (S and I terms)

detection of order of autoregressive and moving average terms

fit, evaluation, ...

prediction

Dynamic models!
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Modelling

Modelling for:

Explaining why events happen this way over time:

Independent variables are associated with events y in t → regression
Past events are“cause”of present events t → dynamic models

How to predict t + k?
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Modelling

Exploratory analysis
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Modelling

Exploratory analysis – trend
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Modelling

Colinearity
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Modelling

Colinearity
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Modelling

Colinearity
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Modelling

Structure

Autocorrelation

Components
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Modelling

TS Components

Fig.: Maximum temperature
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Modelling

Functional form
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Modelling

Seasonality

Exclude the seasonality of the independent variables using sinusoid
functions.

Use the residuals of this seasonal model as independent variables

Include a seasonal term in the complete model

Interpretation is the same, as the residuals keep the same measure
unit: the meaning of the parameter estimated is the same
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Modelling

Multiple model

Test the significance of each time lag, respecting the functional form

Join all lags and covariates

When the functional form is not linear → categorise, segmented
regression, CART model (Classification and regression trees)

Splines & PDL
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Modelling

Residuals

ACF of residuals again

still trend?

inclusion of AR term
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Modelling

Summary

Counts: Poisson, Quasipoisson or Negative Binomial →
overdispersion!

Trend and seasonality → s(tempo) e s(tempo, k=52)

Removal of seasonality of independent variables

Regression model

gam(cases ~ offset(log(pop)) + s(time) +

sin(2*pi*(1:\text{length(dataset)}/52.14) +

covs + lag(cases, 1),

family=negbin(c(1,10), data=dataset)
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