



2453-13

School on Modelling Tools and Capacity Building in Climate and Public Health

15 - 26 April 2013

Area Data Analysis

SA CARVALHO Marilia

PROCC FIOCRUZ Avenida Brasil 4365 Rio De Janeiro 21040360 BRAZIL

## Area Data Analysis

Marilia Sá Carvalho

Fundação Oswaldo Cruz

# Outline

#### Introduction

- 2 Exploratory Analysis
- 3 Hypothesis tests
- GAM Models
- 5 Areal models
  - Spatial Auto Regressive Models SAR
  - Conditional autoregressive models CAR

#### 6 Mixed Models

#### **7** Our example

# Outline



#### References

- Bailey, T.C. and Gatrell, A.C.. Interactive Spatial Data Analysis. Longman, 1996.
- Bivand. R.S; Pebesma, E.J.; Goméz-Rubio, V. *Applied Spatial Data Analysis with R*. Springer, 2008.
- Wood, S.N.. *Generalized Additive Models: An Introduction with R.* Chapman & Hall/CRC Texts in Statistical Science Series, 2006.

### What is areal data

• The most common and available spatial data

| Place                 | Cases | Population | Covariate |
|-----------------------|-------|------------|-----------|
| <b>Rio das Flores</b> | 10    | 1200       | 5.34      |
| Sao Pedro             | 25    | 2134       | 2.56      |
| Botucatu              | 354   | 30405      | 10.45     |

• And a boundary!

## Definition

- An observed areal data x is a realisation of a random process X in a discrete space
  - The areas are fixed
  - The observations x associated with each area are random
- The aim is to estimate parameters of the distribution of X:
  - to describe
  - to explain based on covariates
- This structure is not "natural", but available, pragmatic

## How can we use areal techniques here?

- Location of dengue fever cases
- Number of *Aedes aegypti* collected in a random sample of households
- Rainfall measures in 16 sites in Rio
- Results (Positive/Negative) of a dengue fever seroprevalence survey in a random sample of households
- Counts of leprosy by census tract

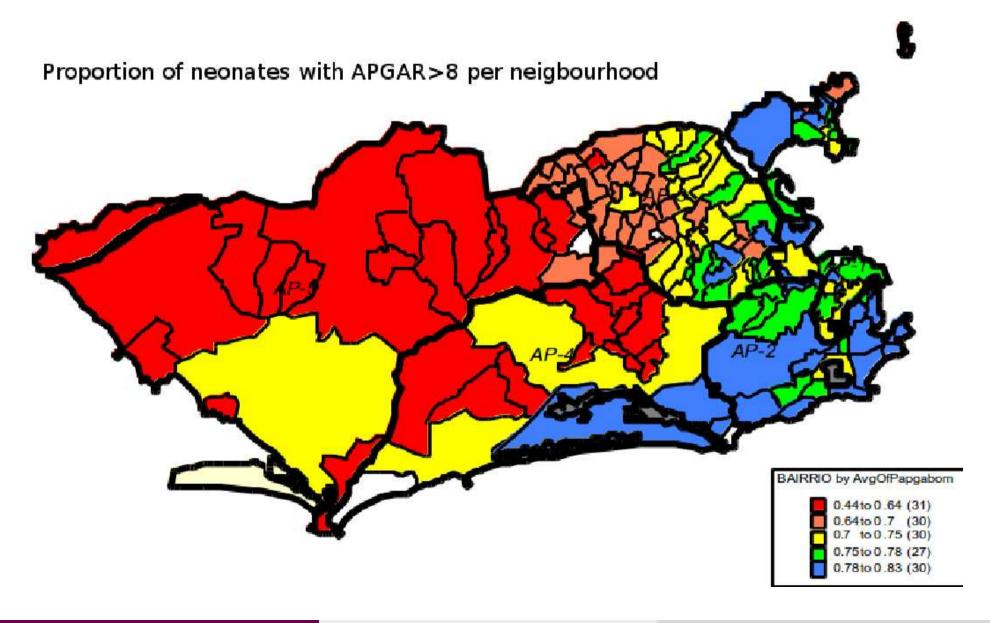
#### Exploratory Analysis

## Outline

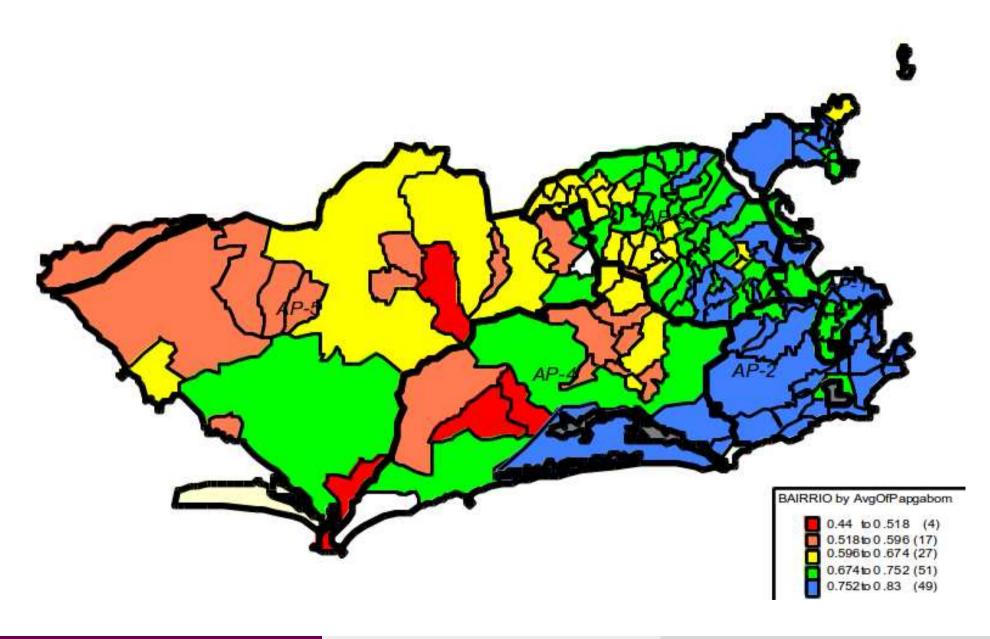
2 Exploratory Analysis

#### Exploratory Analysis

### Easiest representation

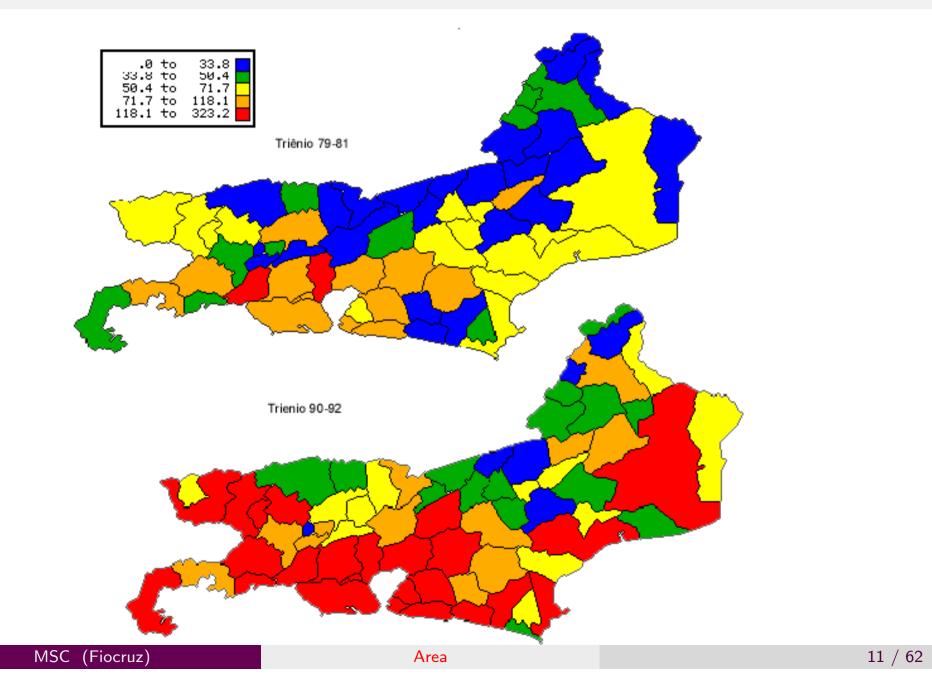


# Maybe...



#### xploratory Analysis

# Comparison



Vicinity

- Any modelling of areal data has to specify how the areas are connected
- This requires a spatial weights matrix that reflects the intensity of the geographic relationship between observations in a neighbourhoods:

#### Exploratory Analysis

## Vicinity

 $w_{ij} = \begin{cases} 1, & A_i \text{ centroid is the closest to } A_j \\ 0, & \text{otherwise} \end{cases}$  $w_{ij} = \begin{cases} 1, & A_i \text{ centroid is inside a buffer for} A_j \\ 0, & \text{otherwise} \end{cases}$  $w_{ij} = \begin{cases} 1, & A_i \text{ has a common border with } A_j \\ 0, & \text{otherwise} \end{cases}$  $w_{ij} = \begin{cases} 1, & A_i \text{ has a direct highway link with} A_j \\ 0, & \text{otherwise} \end{cases}$  $w_{ij} = \frac{l_{ij}}{l_{i}}$ , where  $l_{ij}$  is the length of the common border and  $l_i$  is the perimeter of  $A_i$ 

## Rio has many beautiful mountains



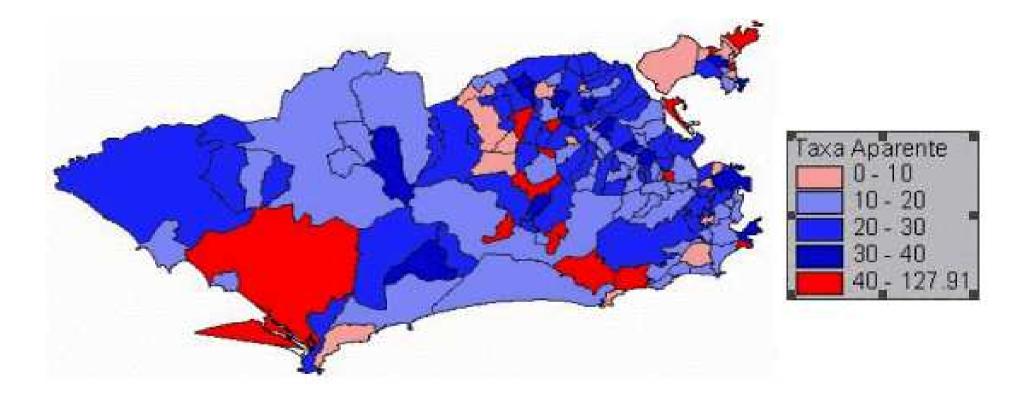
#### And not many roads



# Mapping – Standardised Rates (SMR)

- Useful technique to allow comparison over time, and among areas with varying demographic structure
- Usually standardised by age and sex direct and indirect standardisation
- Direct:
  - considering the overall rate r of a disease as:  $r = \sum O_i / \sum Pop_i$
  - for each area i in region A calculate the number of expected cases as:  $E_i = Pop_i \times r$
  - $SMR = O_i / E_i$

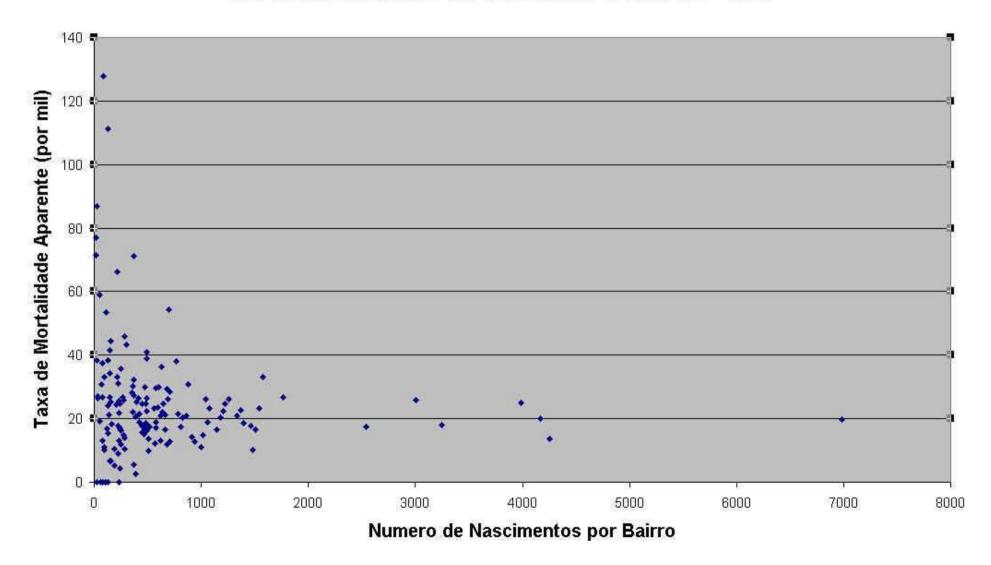
### Random fluctuation



#### Exploratory Analysis

### Random fluctuation

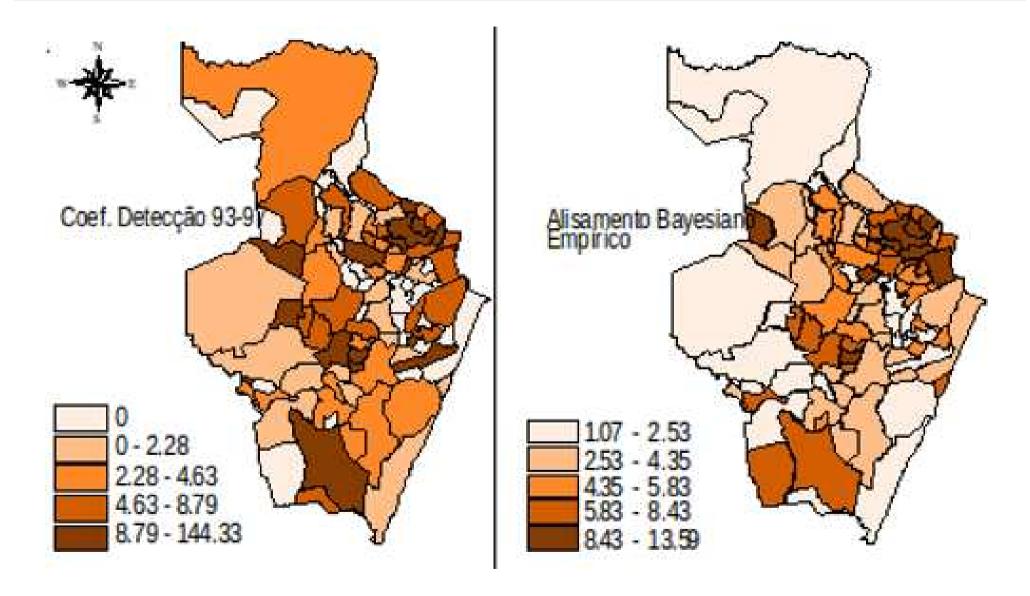
TAXA DE MORTALIDADE INFANTIL NO RIO DE JANEIRO - 1994



### Smoothing areal data

- The same idea of any smoother: to eliminate random fluctuation
- We need a map to "see" the underlying pattern
- We do have prior information:
  - small population indicators fluctuate a lot!
  - neighbouring areas tend to be more similar to each other
- Empirical Bayes methods

## **Empirical Bayes Estimator**



### **Empirical Bayes Estimator**

- Consider the observed raw rate  $r_i = y_i/n_i$ , where y is the number of events in area i and  $n_i$  the population at risk
- Its variance will be:  $s^2 = \sum n_i (r_i \hat{\mu})^2 / \sum n_i$
- A better estimator of the underlying process is:

$$\theta_i = C_i r_i + (1 - C_i)\hat{\mu}$$

• Where the correction factor is:

$$C_i = \frac{s^2 - \frac{\hat{\mu}}{\bar{n}}}{s^2 - \frac{\hat{\mu}}{\bar{n}} + \frac{\hat{\mu}}{n_i}}$$

 $\bullet~\mu$  may be the overall mean or a local mean

#### Hypothesis test

## Outline

**3** Hypothesis tests

#### **Cluster detection**

- A cluster among areas means that close by areas present much more similar indicator values than expected
- Causes of clusters: common source, contagion
- In general space and time concentrated
- But more often socioeconomic conditions!
- All tests depends upon the neighbourhood matrix
- Two types of tests:
  - generic measure the overall degree of spatial autocorrelation
  - local LISA and scan tests

#### Hypothesis test

### Moran's I

$$I = \frac{N}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})}$$

- Values range from -1 (indicating perfect dispersion) to +1 (perfect correlation)
- Zero value indicates a random spatial pattern
- Be careful: under stationarity

#### Hypothesis tests

## Geary's C

$$C = \frac{N}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - x_j)^2}{\sum_{i} (x_i - \bar{x})}$$

- Values range between 0 and 2
- 1 means no spatial autocorrelation
- Values lower the 1 positive autocorrelation
- More sensitive to local spatial correlation

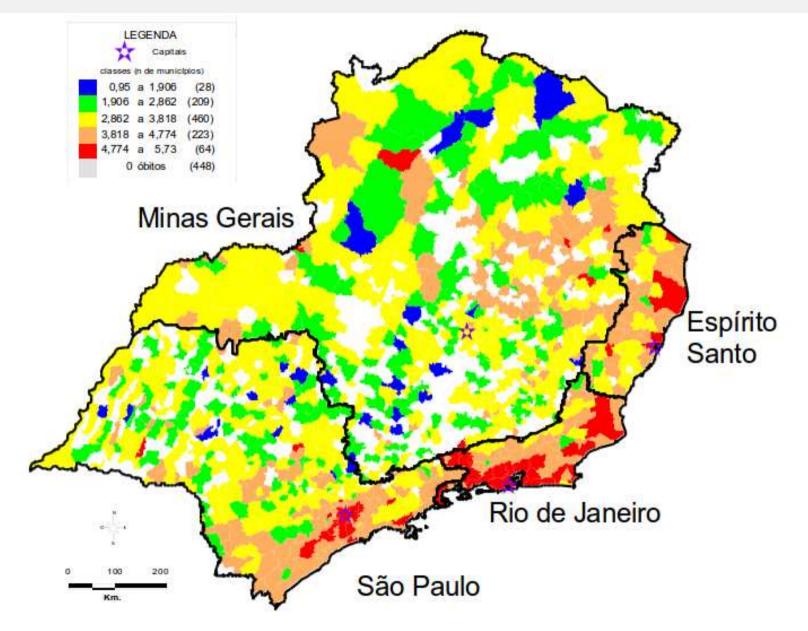
#### Hypothesis tests

## Correlogram

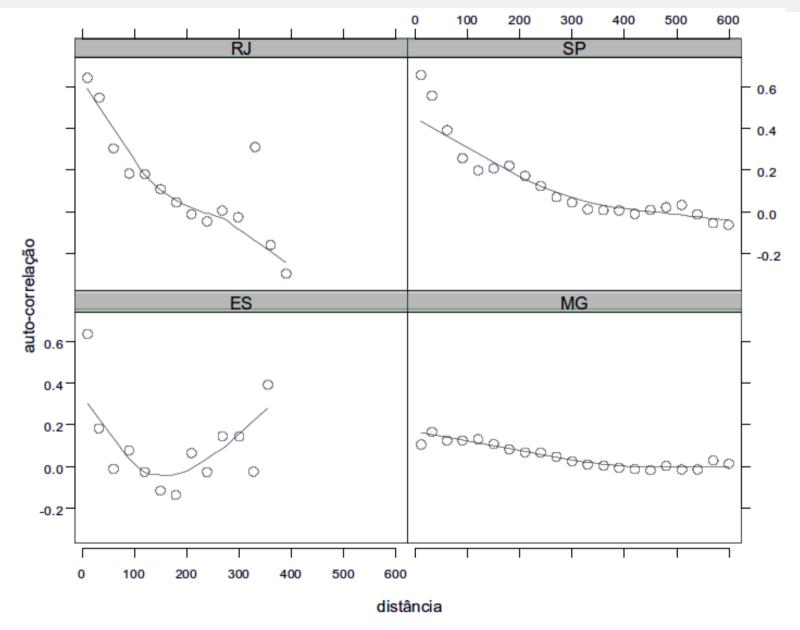
$$I^{(k)} = \frac{N}{\sum_{i} \sum_{j} w_{ij}^{(k)}} \frac{\sum_{i} \sum_{j} w_{ij}^{(k)} (x_{i} - \bar{x})(x_{j} - \bar{x})}{\sum_{i} (x_{i} - \bar{x})}$$

- k is the spatial lag
- Statistical significance either permutation tests or Z test if x is normal

## Correlogram



# Correlogram



Area

#### Local tests

- To find particularities in spatial pattern:
  - cluster
  - anomalous areas
  - more then one spatial underlying process
- LISA Local indicators of spatial association
- Kulldorff scan statistics

# LISA

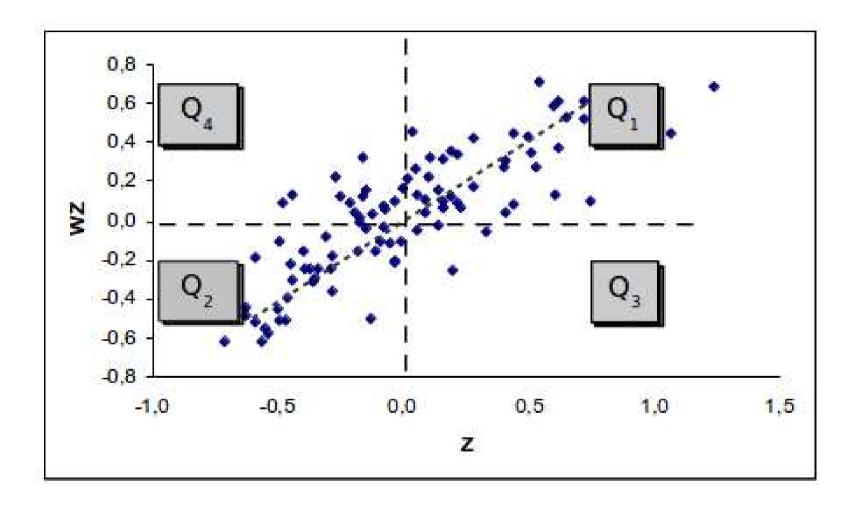
• The same idea as *I*, but instead of the global mean the statistics is based on local mean:

$$I_i = \frac{z_i \sum_j w_{ij} \bar{z_j}}{\sum_{i=1}^N z_i^2}$$

- $z_i \rightarrow$  the difference relative to the global mean
- If average of neighbours is similar to the area  $i, I \rightarrow 1$
- Test of significance by permutation

#### Hypothesis tests

# Diagram LISA



## Scan test – hypothesis

- Number of expected cases =  $\lambda \times$  population at risk
- $\lambda \rightarrow$  rate, under  $H_0$  constant over all region
- ${\ensuremath{\, \circ }}$  scan statistics  ${\ensuremath{\, \rightarrow }}$  SaTScan^1

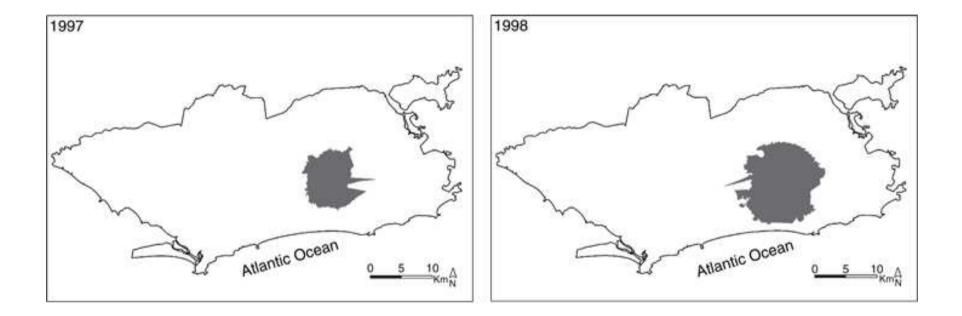
<sup>&</sup>lt;sup>1</sup>http://www.satscan.org/

#### Hypothesis tests

## Scanning

- For each area i, with population  $pop_i$  define a centroid
- Begin the search around each centroid, in circles
- Increase the radius of the circle, and at each step estimate the likelihood ratio between  $\lambda$  of the area inside the circle and the outside region
- The maximum is called  $\rightarrow$  primary cluster
- The statistical significance is given by simulation
- The time can be included easily, considering instead of a circle around each centroid, a cylinder, the height increasing with time

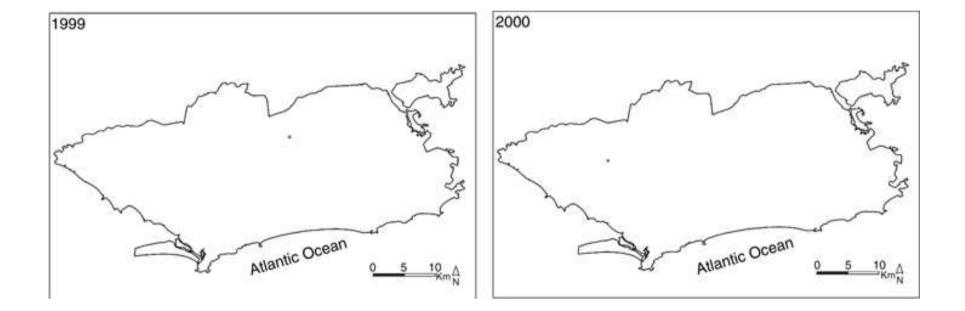
## Leptospirosis no Rio – 1997-1998<sup>1</sup>



MSC (Fiocruz)

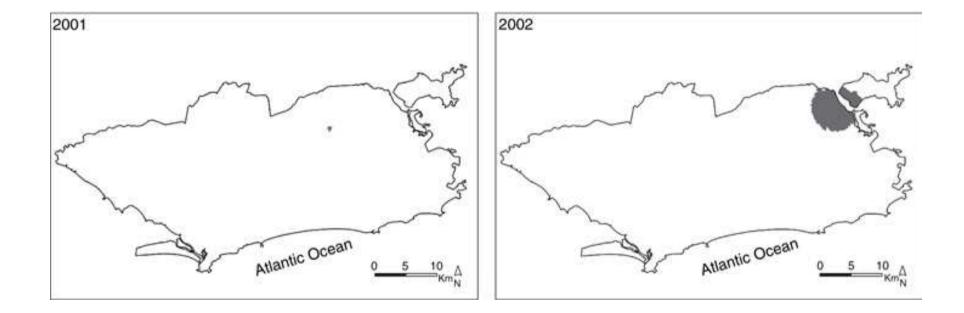
<sup>&</sup>lt;sup>1</sup>Tassinari, WS; Pellegrini, DCP ; Sá, CBP ; Reis, RB ; Ko, A ; Carvalho, MS. Detection and modelling of case clusters for urban leptospirosis. TM & IH. 13:503-512, 2008.

## Leptospirosis no Rio – 1999-2000



Hypothesis tests

## Leptospirosis no Rio – 2001-2002



## Leptospirosis no Rio – Summary

| Cluster                                             | 1                     | 2                     | 3                     | 4                     | 5                     | 6                     |
|-----------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Time span (days)                                    | 21                    | 24                    | 15                    | 14                    | 18                    | 25                    |
| Time frame                                          | 04/01/97–<br>28/01/97 | 07/01/98–<br>30/01/98 | 04/03/99–<br>20/03/99 | 23/09/00–<br>06/10/00 | 28/04/01–<br>25/05/01 | 03/01/02–<br>27/01/02 |
| Cluster area (km <sup>2</sup> )                     | 24.96                 | 50.26                 | 0.20                  | 0.05                  | 0.14                  | 17.69                 |
| No. of cases                                        | 13                    | 19                    | 2                     | 2                     | 2                     | 5                     |
| Population in cluster area                          | 402 325               | 566 208               | 3361                  | 1811                  | 5906                  | 478 952               |
| Cluster attack rate (cases per 10 000 person-years) | 5.10                  | 5.62                  | 144.80                | 287.92                | 68.67                 | 1.52                  |
| Relative risk*                                      | 24.50                 | 29.45                 | 867.05                | 1393.24               | 446.42                | 12.68                 |
| P-value                                             | 0.001                 | 0.001                 | 0.291                 | 0.161                 | 0.590                 | 0.973                 |

#### Table 2. Characteristics of leptospirosis case clusters identified between 1997 and 2002

\*Relative risk was calculated as observed/expected ratio.

#### GAM Models

## Outline



### GAM & spatial models

- All distributions allowed, as in time series
- As usual: poisson, quasipoisson or negative binomial:
- Always use *offset*:
  - log of population at risk
  - log of expected number of cases, estimated using the overall mean
- Space coordinates are the centroids of the areas either geometric or population's
- Counts are discrete, but underlying process is continuous

#### GAM Models

### GAM

• 'NULL' model, only space distribution:

$$y_t = 1 * \log(pop) + s(coordX, coordY) + \varepsilon$$

- This model allows variation on mean (trend)
- Including covariates

$$y_t = 1 * \log(pop) + \beta_0 + s(coordX, coordY) + s(cov) + \varepsilon$$

- Covariates may be entered linearly or using a spline
- For each covariate included, see if there still exists any spatial structure
- The spatial part of the model can present interaction with another variable (i.e. sex, education)

#### GAM Models

### When to use GAM

- Space is continuous and isotropic
- The spatial term models variation on the mean (trend)
- The places where the centroids is farther apart the confidence interval is larger.
- This mode does not take into account border effect CI is larger, smooth spatial effect goes to areas outside the border
- As all spatial information is condensed at the areas centroid, any information on connection between areas is lost – only weight matrix is distance between centroids
- Spatial term is purely additive it is summed to the effect of other covariates
- It is a very good exploratory approach to spatial modelling

#### Areal models

### Outline

### 5 Areal models

- Spatial Auto Regressive Models SAR
- Conditional autoregressive models CAR

## The problem

- Data is collected aggregated in areas
- Autocorrelation tests are positive
- We want to model the association of some important variable on the number of cases of the disease, but we do know that spurious association are present if both present similar trend





• Spatial Auto Regressive Models – SAR

SAR

## Spatial Auto Regressive Models – SAR

• It is an extension of GLM that includes a spatial dependence term

 $Y \sim N(\mu, \sigma)$  $Y = \mu + e$  $\mu = \beta X$ 

- $Y \rightarrow$  mortality or morbidity rate
- $X \to \text{covariates}$
- $\beta \rightarrow$  parameters to estimate
- $\mathsf{e} \to \mathsf{error}$

• To include a spatial term:

$$e_i = \sum_{i=1}^m b_{ij} e_i + \varepsilon_i$$

SAR

$$i \rightarrow \text{areas index}$$

 $b_{ij} \rightarrow$  parameter of dependence between neighbouring areas i and j e  $\rightarrow$  covariance between i e j

• If neighbourhood matrix is symmetric, the model can be re-parametrised as:

$$\sum_{\varepsilon_i} = \sigma^2 I$$
$$Var[Y] = \frac{\sigma^2}{(I - \lambda)^2}$$

SAR

 $\sigma^2 \rightarrow {\rm residual \ variance}$ 

 $I \rightarrow \mathrm{identity}\ \mathrm{matrix}$ 

 $\lambda \rightarrow$  spatial autocorrelation matrix

### al models SAR

## Estimating SAR

- Estimation:
  - First the autocorrelation parameters are estimated using Maximum Likelihood
  - The regression parameters ares estimated using least squares:
- Not available for GLMs
- Estimated parameters represent population averages, controlled for the effect of spatial dependence

## Adaptations for SAR models

- $\bullet\,$  To take into account the population size  $\rightarrow\,$  include population as a weight
- When the dependent variables, conditioned by covariates, is not normal  $\rightarrow$  variable transformation
- If  $log transformed \rightarrow use log(pop)$  for weights

## Outline



- Spatial Auto Regressive Models SAR
- Conditional autoregressive models CAR

CAR

• Similar to SAR, but for dependence structure

$$e_i | e_j \sim N\left(\sum_j \frac{c_{ij} e_j}{\sum_j c_{ij}}, \frac{\sigma^2}{\sum_j c_{ij}}\right)$$

CAR

j neighbour of i  $c_{ij} \rightarrow {\rm covariance\ between\ }i \ {\rm and\ }j, \ {\rm if\ neighbours\ } \\ \varepsilon_i \rightarrow {\rm residuals\ }$ 

## CAR

- The neighbourhood matrix strongly affects both models (SAR and CAR)
- In R the function nb2listw allows exploring different neighbourhood matrix
- The default is standardise for each area, making the weight =  $1 \rightarrow$  total sum of weights = n (number of areas)
- Observe that in this case the neighbourhood matrix is not symmetrical
- SAR models are OK, but CAR are not!

#### al models CAR

### Steps to modelling

Estimate the lm as usual, verify residuals and results

mod <- lm(rate ~ cov, data=dataset)
summary(mod); plot(mod)</pre>

- **2** If residuals are not reasonably gaussian  $\rightarrow$  transform the variable
- **③** Be careful with values zero  $\rightarrow$  sum 1 before estimating the rate
- ④ If the size of population is very different among areas  $\rightarrow$  include population as weight

modw <- lm(ratelog ~ cov, weigths=log(pop), data=dataset)
summary(modw)
plot(modw)</pre>

Assess dependence of residuals moran.test(residuals(modw), neigh.weights)

## Steps – going on

• If residuals present spatial structure  $\rightarrow$  model SAR or CAR

## Steps – going on

- There is no plot function to plot residuals
- On not worry about spatial dependence of residuals, the models do care about it
- The choice between SAR and CAR can be based on AIC

#### Mixed Model

## Outline



#### **Aixed Models**

### Random effects

- The errors  $e_i$  from equation  $y_i = \beta_0 + \beta_1 x_1 + \cdots + e_i$  can be treated as random effects, varying between areas
- Those  $e_i$  may present structures such as:
  - spatial weights, as in CAR and SAR
  - just random intercept
  - random intercept varying according to some specific region
  - a mix

#### Mixed Models

### How to fit

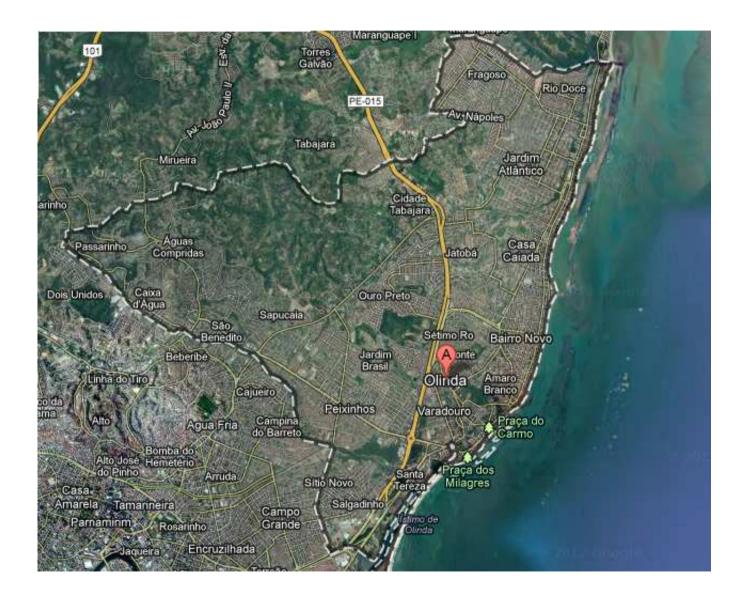
- library lme4
- Reference: Pinheiro, J. C.; Bates, D. M.. *Mixed-Effects Models in S and S-PLUS*. Springer, 2000.

#### Our example

## Outline



### Olinda



# Leprosy in Olinda

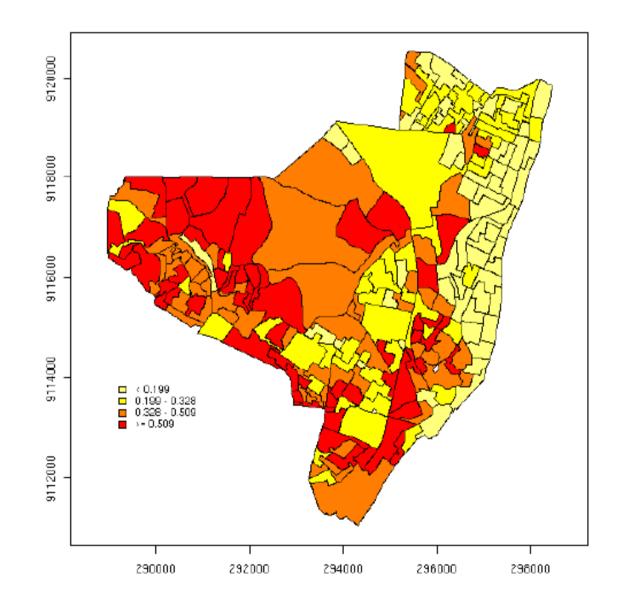


MSC (Fiocruz)

Area

61 / 62

## Poverty in Olinda



Area