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Objectives and Questions

• Objective:
Introduce other regression beyond the mean

• Are there median regression models

• What about regression at the mode?

• Can we fit regression model at any other locations
too?

• What of the variance, skewness and kurtosis?
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Prelimaries

• Given a r.v. y ∼ f(·) then

-E(Y ) = μ defines the mean;

-V ar(Y ) = σ2 is the variance.

• General assumption: two measures completely de-

fine the distribution (stationarity concept)

• Classical regression is often characterized by relat-

ing to the mean

-E(y|x) = βx if x is the set of covariates.

-y ∼ N(μ, σ2), then μ = βx
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-y ∼ Bern(π), then log
(

π
1−π

)
= βx

-y ∼ Pois(λ), then log(λ) = βx.

• Statisticians are mean lovers (Friedman, Fried-
man & Amoo)

• It goes like:
We are ”mean” lovers. Deviation is considered normal. We are right 95%

of the time. Statisticians do it discretely and continuously. We can legally

comment on someone’s posterior distribution.

• Why the mean?
-Mean regression reduces complexity
-However, the mean is not sufficient to describe a
distribution.



Examples Plot (Rent in Munich, Kneib et al)
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Examples Quantile Plot (Rent in Munich, Kneib

et al)
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Example (Malaria vs Altitude , Kazembe et al)
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Example (Botswana data)
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Motivating Examples

• Epidemiology and Public Health:

-Investigating height, weight and body mass index

as a function of different covariates e.g. age (Wei

et al. 2006)

-Exploring stunting curves in African and Indian

children (Yue et al. 2012)

-Generating age-specific centile charts (Chitty et al.

1994).

• Economics:

-Study of determinants of wages (Koenker, 2005).
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• Education:

-The performance of students in public schools (Koenker

and Hallock, 2001).

• Climate data:

- Spatiotemporal analysis of Boston temperature

(Reich 2012)



Double GLM

• Classical regression assumes a homogeneous vari-

ance

y|x, ε ∼ N(βx, σ2)

ε ∼ N(0, σ2)

• However variance heterogeneity (heteroscedasticity)

is an order in real-life problems

• The variance of the response may depend on the

covariates
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• Normal regression example:

-Regression for mean and variance of a normal dis-

tribution

yi = ηi1 + exp(η2i)εi, εi ∼ N(0,1)

such that

E(yi|xi) = η1i

V ar(yi|xi) = exp(η2i)
2



Regression for location, scale and shape

• In general: Specify a distribution for the response

on all parameters and relate to the predictors.

• The generalized additive model location, scale and

shape (GAMLSS) is a statistical model developed

by Rigby and Stasinopoulos (2005).

• For a probability (density) function f(yi|μi, σi, νi, τi)
conditional on (μi, σi, νi, τi) a vector of four distri-

bution parameters, each of which can be a function
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to the explanatory variables (X)

g1(μ) = η1 = β1X1 +
J1∑
j=1

hj1(xj1) (1)

g2(σ) = η2 = β2X2 +
J2∑
j=1

hj2(xj2) (2)

g3(ν) = η3 = β3X3 +
J3∑
j=1

hj3(xj3) (3)

g4(τ) = η4 = β4X4 +
J4∑
j=1

hj4(xj4) (4)



• GAMLSS assumes different models for each param-

eter

-Model 1: Mean regression

-Model 2: Dispersion regression

-Model 3: Skewness regression

-Model 4: Kurtosis regression

• Other summary measures are also permissible



Quantile Regression

• Quantile, Centile, and Percentile are terms that can
be used interchangeably
-A 0.5 quantile ≡ 50 percentile, which is a median.

• Related terms are quartiles, quintiles and deciles:
divides distribution into 4, 5, and 10 parts

• Quantiles are related to the median.

• Suppose Y has a cumulative distribution F (y) =
P (Y ≤ τ). Then τth quantile of Y is defined to be

Q(τ) =
∫ τ

−∞
f(y)dy = inf{y : τ ≤ F (y)}
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for 0 < τ < 1.

• The quantile regression drops the parametric as-
sumption for the error/ response distribution.

• Fit separate models for different asymmetries τ ∈
[0,1]:

yi = ηiτ + εiτ

• Instead of assuming E(yi ≤ ηiτ = 0, one assumes

P (εiτ ≤ 0) = τ

or

Fyi(ηiτ) = P (εiτ ≤ 0) = τ



• This gives a set of regression function at any as-

sumed quantile value.

• Assumptions:

-it is distribution-free since it does not make any

specific assumption on the type of errors

-it does not even require i.i.d errors

-it allows for heterogeneity.



Expectile Regression

• Expectiles are related to the mean, as are quantiles

related to the median.

∑n
i=1 |yi − ηi| → min

∑n
i=1wτ(yi, ηiτ)|yi − ηiτ | → min

median regression quantile regression

∑n
i=1 |yi − ηi|2 → min

∑n
i=1wτ(yi, ηiτ)|yi − ηiτ |2 → min

mean regression expectile regression

where wτ is the check function defined by
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wτ =

⎧⎨
⎩
τ if yi > μ(τ)

1− τ if yi ≤ μ(τ)

for some population expectile μ(τ) for different val-
ues of an asymmetric parameter 0 < τ < 1.

• Expectiles are obtained by solving

τ =

∫ eτ−∞ |y − eτ |fy(y)dy∫∞−∞ |y − eτ |fy(y)dy
=

Gy(eτ)− eτFy(eτ)

2(Gy(eτ)− eτFy(eτ)) + (eτ − μ)

where
-fy(·) and Fy(·) denote the density and cumulative
distribution function of y.
-Gy(e) =

∫ e−∞ yfy(y)dy is the partial moment func-
tion of y and
-Gy(∞) = μ is the expectation of y.



Worked example - binomial data
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