

2453-25

School on Modelling Tools and Capacity Building in Climate and Public Health

15 - 26 April 2013

Evidence based climate risk management in health: the case of epidemic malaria

GITHEKO Andrew

Climate and Human Health Research Unit Centre for Global Health Research Kenya Medical Research Institute Busia Road, P.O. Box 1578-40100, Kisuma KENYA

EVIDENCE BASED CLIMATE RISK MANAGEMENT IN HEALTH: THE CASE OF EPIDEMIC MALARIA

DR ANDREW GITHEKO CLIMATE AND HUMAN HEALTH RESEARCH UNIT KEMRI KISUMU DECEMBER 2012 Sensitivity of VBD to Climate
ChangeHIGHLY SENSITIVELOW SENSITIVITYMALARIASCHSTOSOMIASISDENGUEFILARIASISCHIKUNGUNYALEISHMANIARIFT VALLEY FEVERTRYMANOSOMIASIS

YELLOW FEVER

NTD SENSITIVITY TO CLIMATE CHANGE

- Major NTDS in Kenya are schstosomiasis, soil helminths, filariasis, leishnaniasis hydatid disaese
- The above pathogens are compleex organisms that have low sensitivity to changes in temperature. They exisst in endemic forms
- Dengue and other viral pathogens are highly sensitive to temperature variations and exist in endemic and epidemic forms.

Effects of climate change and variability on VBD

• Climate change increases the suitability of new areas to disease transmission

• Climate variability drives epidemics

Mean annual temperature trends Kisumu

Rainfall trends March April May in Kisumu

Malaria case anomalies in Nandi district western Kenya associated with El Nino weather

Malaria spreads to Central Kenya highlands because of climate change

Many episodes of malaria per year in "U" shaped valley

Many episodes of malaria per year in "U" shaped valley

Few episodes of malaria in "V" shaped valley ecosystem

Low malaria prevalence low immunity: high epidemic risk

Evolution of malaria epidemics

Models using climate data

Multiplicative

model

Additive model

Vector distribution and control

- In the highlands 98% of the malaria mosquitoes are found in houses less that 500 meters from breeding habitats at the valley bottom
- Targeting these houses for indoor resting spry is highly effective and efficient strategy for malaria epidemic control

Targeted IRS Iguhu Kakamega

Impacts of house modification

- House modification can reduce the the numbers of indoor mosquitoes by 88%
- The modification stabilizes the indoor temperatures, cooling the houses during the day and keeping them warm at night.
- The ceiling improves the house esthetics
- This is local technology that is affordable and acceptable by the local populations

Malaria epidemics

- Climate variability can increase the number of malaria cases by 100-700% and mortality by 500%
- Areas are most affected by the epidemics are the highlands of Kenya Uganda, Tanzania Ethiopia, Rwanda and Burundi and Madagascar
- An early epidemic warning system was developed for early prediction and prevention of the epidemic

Adaptation to climate change Malaria

- Develop climate based early epidemic prediction models
- Identify new areas affected by malaria transmission
- Identify epidemic hotspots
- Use universal application of insecticide treated bed nets
- Apply targeted Indoor residual Spraying (IRS)

ADAPT

THANK YOU

Research funded by IDRC and DFID