

Reference-free X-Ray spectrometry – principles and selected application

<u>B. Beckhoff</u>, M. Gerlach, I. Holfelder, P. Hönicke, J. Lubeck, M. Müller, A. Nutsch, B. Pollakowski, C. Streeck, R. Unterumsberger, and J. Weser

> Physikalisch-Technische Bundesanstalt Abbestraße 2-12, 10587 Berlin, Germany

Joint ICTP-IAEA Workshop on Advanced Synchrotron Radiation Based X-ray Spectrometry Techniques, April 22-26, 2013 Trieste, Italy

- analytical challenges for nanotechnologies
- reference-free x-ray spectrometry
- nanolayer characterization
- depth profiling at grazing incidence
- chemical speciation at buried interfaces

- dozens of new nanoscaled materials appear every month
- technology R&D cycles for new materials down to 4 months
- need for correlation of material properties with functionality
- requirements on sensitivity, selectivity and information depth
- most analytical methodologies rely on reference materials or calibration standards but there are only few at the nanoscale
- usage of calibrated instrumentation and knowledge on atomic data enables reference-free techniques such as SR based XRS

Challenges for nanotechnologies – RMs and reference-free methodology

Nanoscaled reference materials may be required when

- critical dimensions (CD) of specimens and / or
- the analytical information depths

are in the 1 nm to 100 nm range.

Applications:

- (buried) nanolayered systems to be analysed by GIXRF or XRF
- low energy ion implantations in silicon or advanced materials by GIXRF
- analysis of nano-scaled objects (SWNTs, MWNTs, etc.) by GIXRF
- lateral resolution of XRF reaching 100 nm at 3rd generation SR facilities

... and <u>below 1 nm</u> CD:

- analysis of surface contamination (< 0.4 nm) by TXRF
- analysis of buried interfaces and contamination by GIXRF

Challenges for nanotechnologies – nano-scaled reference materials

X-ray and IR spectrometry

Nanoscaled Reference Materials (in line with ISO/TC 229 Nanotechnologies)

,Reference materials are the key to guaranteeing realiability and correctness for results of chemical analyses and technical measurements.

Categories:

- flatness
- film thickness
- single step , periodic step, step grating
- lateral X-Y-axis, 1-dim
- lateral X-Y-axis, +2-dim,
- critical dimensions
- 3-dimensional
- nanoobjects/nanoparticles/nanomaterial
- nanocrystallite materials
- porosity
- depth profiling resolution

Every month several tens new nanoscaled materials appear.

The number of nanoscaled

reference

materials is considerably lower.

Reference-free methodologies

can address this increasing gap.

www.nano-refmat.bam.de/en/

- dozens of new nanoscaled materials appear every month
- technology R&D cycles for new materials down to 4 months
- need for correlation of material properties with functionality
- requirements on sensitivity, selectivity and information depth
- most analytical methodologies rely on reference materials or calibration standards but there are only few at the nanoscale
- usage of calibrated instrumentation and knowledge on atomic data enables reference-free techniques such as SR based XRS

X-ray spectrometry methodologies:

reference-based versus reference-free approaches

reference-based technique based on well known calibration specimens or reference materials

X-ray spectrometry methodologies:

reference-based versus reference-free approaches

reference-based technique based on well known calibration specimens or reference materials reference-free technique based on calibrated instrumentation and fundamental parameters

PTB laboratory at BESSY II: well-known synchrotron radiation for x-ray radiometry and x-ray spectrometry

Metrology with SR

PTB laboratory at BESSY II: well-known synchrotron radiation for the calibration of x-ray instrumentation

Synchrotron radiation based x-ray spectrometry

XRS excitation channel: XRS detection channel: absolute detection efficiency and response functions well-known spectral distribution well-known and a well-known radiant power solid angle $d\Omega$ fluorescence radiation Φ Ψ **PTB** capabilities: \rightarrow characterized beamlines fundamental parameters specimen knowledge of the parameters \rightarrow calibrated photodiodes \rightarrow calibrated diaphragms transmission measurements \rightarrow calibrated Si(Li) detectors absorption correction factors JAAS 23, 845 (2008)

Tuning the analytical sensitivity and information depth by means of appropriate operational parameters

X-ray and IR spectrometry

XSW = X-ray Standing Wave field

JAAS 23, 845 (2008)

- E_0 = photon energy of excitation radiation
- **E**₁ = photon energy above absorption edge
- **E**_f = photon energy of fluorescence radiation

Total-reflection X-Ray Fluorescence (TXRF) facility for 200 and 300 mm Si wafers using synchrotron radiation

X-ray and IR spectrometry

Novel XRS instrumentation for advanced materials characterizations with SR

X-ray and IR spectrometry

PTB XRS intrumentation at BESSY

9-axis manipulator and chamber ensuring

- the entire TXRF, GIXRF and XRF regime
- polarization-dependent speciation by XAFS
- combined GIXRF and XRR investigations
- movable aperture system for reference-free XRF and atomic FP determinations

Transfer of modified instrumentation to

- TU Berlin for a **plasma source**
- LNE/CEA-LNHB for SOLEIL
- IAEA (UN) for **ELETTRA**

Janin Lubeck et al.,

Rev. Sci. Instrum. 84, 045106 (2013)

Novel XRS instrumentation for advanced materials characterizations with SR

Novel XRS instrumentation for advanced materials characterizations with SR

X-ray and IR spectrometry

PTB XRS intrumentation at BESSY

Technology transfer to and together with TU Berlin, to LNHB as well as to IAEA

- transfer to TU Berlin completed
- Characterization and first commissioning for IAEA and LNHB will be completed by the end of 2013

Janin Lubeck et al., Rev. Sci. Instrum. **84**, 045106 (2013)

Development of the novel XRS instrumentation for IAEA to be operated at ELETTRA

X-ray and IR spectrometry

- UHV-chamber with load-lock
- moveable and motorized base frame (2x linear, 1x rotational)
- motorized 7-axis manipulator (4x linear, 3x rotational)

Janin Lubeck et al.,

Rev. Sci. Instrum. 84, 045106 (2013)

X-Ray Fluorescence (XRF) analysis of various Hf containing oxide nanolayers on Si substrate

High-k nanolayers (Hf oxide / silicon oxide) layer thickness

X-ray and IR spectrometry

$$\Phi_i^d(E_0) = \Phi_0(E_0)\tau_i(E_0)W_i \frac{1}{\sin\psi_{in}}\omega_{K,i} \frac{r_{K,i}-1}{r_{K,i}}f_{i,K\alpha} \frac{\Omega}{4\pi}$$
$$\times \frac{1}{\frac{\mu(E_0)}{\sin\psi_{in}} + \frac{\mu(E_i)}{\sin\psi_{out}}} \left(1 - \exp\left[-\left(\frac{\mu(E_0)}{\sin\psi_{in}} + \frac{\mu(E_i)}{\sin\psi_{out}}\right)\rho d\right]\right)$$

		excited mass Hf from La counts	excited Hf atoms	calculated mass of Si	calculated mass of O	Layer thickness /nm
		/ ng/cm²	/ cm^-2	(stoichiometric) / ng/cm²	(stoichiometric) / ng/cm²	density 9.7 / 6.7 g/cm³
D04	5nm HfO2	3680 ± 390	1.243E+16		660.5	4.5 ± 0.7
D05	2nm HfO2	1170 ± 120	3.947E+15		209.7	1.4 ± 0.25
D06	2nm HfO2	1040 ± 110	3.520E+15		187.1	1.3 ± 0.2
D07	2nm HfSiOx (60% Hf)	790 ± 80	2.676E+15	124.8	403.9	1.8 ± 0.3

DO4:

(4.3 ± 0.2) nm (4.5 ± 0.7) nm XRR ref.-free XRF

ECS Transact. 25 (3),293 and 349 (2009)

Quantitation in SR-TXRF routine analysis on Si wafers

X-ray and IR spectrometry

TXRF **spectra deconvolution** including Si(Li) detector response functions, RRS, and bremsstrahlung contributions.

reference-free TXRF **quantitation**: known incident flux, detector efficiency and solid angle.

spin-coated wafer with 10¹² cm⁻² of various transition metals

Phys. Stat. Sol. B 246,1415 (2009)

mass deposition m_i / F_I of the element *i* with unit area F_I

$$\frac{m_i}{F_I} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_i}{P_{0,Wsurf} \tau_{i,E_0} Q \frac{\Omega_{det}}{4\pi} \frac{1}{\sin \psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

photon energy of the incident (excitation) radiation

radiant power of the incident radiation

signal of the photodiode measuring the incident radiation

spectral responsitivity of the photodiode

 $P_0 = S_0 / \sigma_{diode, E_0}$

 E_0

 S_0

mass deposition m_i / F_I of the element *i* with unit area F_I

$$\frac{m_i}{F_I} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_i}{P_{0,Wsurf} \tau_{i,E_0} Q \frac{\Omega_{det}}{4\pi} \frac{1}{\sin \psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

relative intensity of the X-ray standing wave field¹ at the wafer surface

I_{Wsurf}

 Ψ_{in}

 E_i

 $P_{0,Wsurf} = P_0 I_{Wsurf}$

1 software package IMD: D. Windt, Computers in Physics 12, 360-370 (1998)

angle of incidence with respect to the wafer surface

photon energy of the fluorescence line l of the element i

mass deposition m_i/F_I of the element *i* with unit area F_I

$$\frac{m_i}{F_I} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_i}{P_{0,Wsurf} \tau_{i,E_0} Q \frac{\Omega_{det}}{4\pi} \frac{1}{\sin \psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

 R_i detected count rate of the fluorescence line l of the element i \mathcal{E}_{det,E_i} detection efficiency of the Si(Li) detector at the photon energy E_i

$$P_i = R_i / \varepsilon_{det,i}$$

 effective solid angle of detection

mass deposition m_i / F_I of the element *i* with unit area F_I

$$\frac{m_i}{F_I} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_i}{P_{0,Wsurf} \tau_{i,E_0} Q \frac{\Omega_{det}}{4\pi} \frac{1}{\sin \psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

 Ψ_{out}

 $au_{i,E_0} \ \mu_{i,E}$

angle of observation which equals 90 $^{\circ}$ in a typical TXRF geometry

photo electric cross section of the element i at the photon energy absorption cross section of the element i at the photon energy E

$$\mu_{tot,i} = \mu_{i,E_0} / \sin \psi_{in} + \mu_{i,E_i} / \sin \psi_{out}$$

contamination

mass deposition m_i / F_I of the element *i* with unit area F_I

$$\frac{m_i}{F_I} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_i}{P_{0,Wsurf} \tau_{i,E_0} Q \frac{\Omega_{det}}{4\pi} \frac{1}{\sin \psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

 ω_{Xi} fluorescence yield of the absorption edge Xi (of the element i) $g_{l,Xi}$ transition probability of the fluorescence line l belonging to Xi j_{Xi} jump ratio at the absorption edge Xi

$$Q = \omega_{Xi} g_{l,Xi} (j_{Xi}-1) / j_{Xi}$$

Analysis of contamination on novel materials
(Ge, SOI, InGaAs, ...) or of nanolayered
systems (buried interfaces – photovoltaics)
→ calculation of the x-ray standing wave field

Total-reflection X-ray Fluorescence (TXRF) analysis:

- non-consistent results from round robin tests (differences up to a factor of ten)
- reason: problems with employed calibration samples (droplet depositions)

Assessment of TXRF calibration samples for Ni surface contamination

X-ray and IR spectrometry

<u>Reason for deviations in contamination results</u>: inhomogeneities and absorption saturation of TXRF calibration droplets
 → "slicing" and "angular scanning" of calibration droplets by reference-free TXRF as validation technique
 M. Müller Solid State Phenomena 187, 291 (2012)

Speciation of buried nanolayers by GIXRF-NEXAFS

X-ray and IR spectrometry

 \rightarrow composition and speciation of buried nanolayers

 \rightarrow higher information depth (>> 5nm) than XPS

 \rightarrow parallel variation of incident angle and photon energy

B. Pollakowski Phys. Rev. B 77, 235408 (2008) Anal. Chem. 85, 193 (2013)

 $CR(Ti-L(\alpha,\beta)) / radiant power / (nWs)^{-1} sr$

GIXRF-NEXAFS at the Ti-L_{iii.ii} edges $TiO_{x}9$ $TiO_x 6$ $TiO_x 4$ $TiO_x 3$

speciation of buried Ti oxide nanolayers (the degree of oxidation scales with indices)

Complementary Characterization of Buried Nanolayers by Quantitative X-ray Fluorescence Spectrometry under Conventional and Grazing Incidence Conditions

Rainer Unterumsberger,* Beatrix Pollakowski, Matthias Müller, and Burkhard Beckhoff

Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin, Germany

GIXRF analysis of **B** and As implantation profiles

GIXRF analysis of **B** and As implantation profiles

X-ray and IR spectrometry

Comparison of GIXRF results to SIMS

Comparison of GIXRF results on arsenic samples to SIMS, MEIS and STEM

Characterisation of CIGS photovoltaics

X-ray and IR spectrometry

Cu(In,Ga)Se2 system

GIXRF analysis of CIGS photovoltaics

ГВ

X-ray and IR spectrometry

interface speciation

NIMB 268, 370 (2010)

HELMHOLTZ ZENTRUM BERLIN für Materialien und Energie

sample	treatment	rough- ness
Z141	annealed(1,67 K/min) up to 600°C, 24h at constant temperature	3.2 Å
Z143	as deposited	5.1 Å

interface speciation

NIMB 268, 370 (2010)

interface speciation

Analytical methods, measurement setups, required components, and applications

Method	Incidence Angle θ / °	Detection Angle / °	Detection Systems	Application	
TXRF	0-0.9	90, 2 0	SDD, Diode	elemental (B-U) surface contamination	
GIXRF / XRF	0-30	90 – 0 , 2 0	SDD, Diode	depth profiling, nanolayer analysis	
XRR	0-30	2 0	Diode	layer thickness	
XRD	0-30	2 0	Diode	crystal structure	
GISAXS	0-2	2 0	CCD	nanoparticles and nanostructures on surfaces	
Ellipsometry	15^* (standard setting) 0 – 25 (extended setting)	2 0	Analyzer+ Photomultiplier, CCD system	layer thickness, optical constants	
Vacuum UV Reflectrometry	Normal incidence		UV&VIS spectrometer	layer thickness	
Ina Holfelder et al., J. Anal. At. Spectrom. 28, 549 (2013)					

Typical characteristics and properties of analytical and metrology techniques

X-ray and IR spectrometry

	TXRF	GIXRF	XRF	XRR	XRD	GISAXS
Applications	surfaces	nanolayers, element depth profiles, implantation profiles	bulk materials	nano layers	thin layers	nano structured surfaces, thin films
Properties to be measured	mass density in the range of the elements B to U	mass density, concentration, depth profile in the range of the elements B to U	mass density in the range of the elements B to U	layer thickness, roughness, density	layer thickness, orientation	particle size
Detection limit	app.10 ¹⁰ atoms/ cm ²	app.10 ¹² atoms/ cm ²	app.10 ¹³ atoms/ cm ²	2 nm – 5 nm	3 wgt.%, 2 nm	2 nm
Range	$10^{10} \text{ atoms/ cm}^2 - 10^{15} \text{ atoms/ cm}^2$	10 ¹² atoms/ cm ² - 10 ¹⁷ atoms/ cm ²	ppb – %	5- 500 nm	0.1 nm – 10 nm	2 nm – 1µm
Accuracy (and reproducibility) (*reference free)	0.15* / 0,05 (0.02)	0.2*/0.05 (0.03)	0.2*/0.05 (0.03)	0.02 (0.01)	0.05 (0.02)	0,.15 (0.02)
Spatial resolution	$1 \text{ mm}^2 \text{-} 1 \text{ cm}^2$	0.5 mm^2 - 0.5 cm^2	to 1 mm ²	to 1 mm ²	0.5 mm ² -0.5 cm ²	0.5 mm ² -0.5 cm ²
Measurement speed	50 s - 1000 s/ pt	2000 s - 5 h	100 s - 1000 s	1000 s – 5 h	1000 s – 5 h	10 min/frame

Ina Holfelder et al., J. Anal. At. Spectrom. 28, 549 (2013)

How can a method (rows) help another method (columns) to improve or complement the results

X-ray and IR spectrometry

Methods	TXRF	GIXRF	XRF	XRR	XRD	GISAXS
TXRF		surface contamination	information on surface contamination	information on surface contamination	information on surface contamination	nanoparticle composition
GIXRF	absolute angle calibration		validation measurands	near surface depth profiles	near surface depth profiles	nanoparticle composition
XRF	validation measurands	validation measurands		information on material composition	information on material composition	nanoparticle composition
XRR	layer thickness and roughness for modelling	layer thickness and roughness for modelling	contaminations/ spectral diffrac- tion artefact		layer thickness, roughness, density	substrate surface layer
XRD	information on material morpho- logy, artefacts	information on material morpho- logy, artefacts	information on material morpho- logy, artefacts	information on material morphology		information on material morphology
GISAXS	particle size distribution	particle size distribution		particle size distribution	particle size distribution	

Ina Holfelder et al., J. Anal. At. Spectrom. 28, 549 (2013)

CAD model of an analytical platform for 450 mm wafer (design study)

nanolayer

contamination

www.EEMI450.org

Analytical platform design for 450 mm wafers:

virtual engineering study to ensure TXRF, GIXRF, XRF & XRR investigations and wafer handling

Ina Holfelder et al., J. Anal. At. Spectrom. 28, 549 (2013)

nanolayer speciation

depth profile

CAD model of an analytical platform for 450 mm wafer (design study)

X-ray and IR spectrometry

Ina Holfelder et al., J. Anal. At. Spectrom. 28, 549 (2013)

- Reference-free analysis of contamination on Si and on novel materials
- Quantitative characterization of nanostructured and gradient systems
- Depth profiling (~500 nm) by XRS and interface speciation by XAFS
- Speciation and depth profiling of energy storage and conversion materials
- Novel XRS instrumentation for SR

Further information on reported activities and instrumentation

at www.ANNA-i3.org and www.EEMI450.org

and EMRP IND07, IND15, HLT04 and NEW01 at www.EURAMET.org

Acknowledgements: IMEC, KU Leuven, FhG IISB, Intel, MEMC, Numonyx, Siltronic, Univ. Salford, HZB, IWS Dresden, AXO, FBK, ATI, KFKI AEKI, Technical Universities Berlin and Darmstadt, IPF