Joint ICTP-IAEA Workshop on Advanced Synchrotron Radiation Based X-ray Spectrometry Techniques, Trieste 2013

## Synchrotron Radiation based X-Ray Spectrometry for nanoscaled materials

<u>Matthias Müller</u>, Rainer Unterumsberger, Beatrix Pollakowski and Burkhard Beckhoff

Physikalisch-Technische Bundesanstalt, Berlin X-Ray and IR- Spectrometry Group



### Outline



- analytical challenges for nanotechnology a motivation
- reference-free x-ray spectrometry based on synchrotron radiation
- grazing incidence x-ray fluorescence analysis
- calibration standards for sub-monolayer surface contaminations
- nanolayer analysis
- depth profiling and chemical speciation

- 1 -

### Challenges for nanotechnologies



#### Nanoscaled reference materials may be required when

- critical dimensions (CD) of specimens and / or
- the analytical *information depths* are in the 1 nm to 100 nm range.

#### **Applications:**

- (buried) nanolayered systems to be analyzed by GIXRF or XRF
- low energy ion implantations in silicon or advanced materials by GIXRF
- analysis of nanoscaled objects (Nanoparticles, CNTs, etc.) by GIXRF
- lateral resolution of XRF reaching 100 nm at 3<sup>rd</sup> generation SR facilities
- ... and <u>below 1 nm</u> CD:
- analysis of surface contamination ( < 0.4 nm) by TXRF</li>

- 2 -

analysis of buried interfaces and contamination by GIXRF

www.ptb.de/cms/en/fachabteilungen/abt7/fb-72/ag-724.html

• • • • • • •

### Quantitative x-ray fluorescence analysis

# PĪB

#### Typical XRF quantification variants

#### $\alpha$ - coefficients

- empirical coefficients
- interpolation regime for main matrix elements or traces in constant matrices
- restricted
  extrapolation

#### reference material based

- pre-calibration of instrumentation e.g. by thin standards
- additional calibration
  by reference materials
  for specific *applications*
- flexible interpolation by knowledge on FP data

#### reference-free methodology

- knowledge on both instrumental and fundamental parameters
- increasing relevance for complex sample systems, e.g. nanoscaled specimens
- reason: lack of appropriate reference materials and calibration standards

 $\rightarrow$  Less or even no reference materials required

- 3 -

### Analytical challenges for nanoelectronics

PIB

#### Example: nanolayerd materials for semiconductor devices

- X-Ray Fluorescence analysis (XRF) for semiconductors:
  - ✓ non-destructive and non-preparative
  - ✓ fast qualitative results

- 4 -

- high sensitivity (ppm), sub-monolayers (fg/cm2)
- quantitative results (based on reference materials)
- Semiconductor substrates of interest: Si, Ge, GaAs, InGaAs, InP, InAlAs, etc.
- Hundreds of combinations for nanoscaled thin films
- Lack of appropriate reference materials for nanoscaled systems

### Analytical challenges for nanotechnologies **PB**

- dozens of new nanoscaled materials appear every month
- technology R&D cycles for new materials down to 4 months
- need for correlation of material properties with functionality
- requirements on sensitivity, selectivity and information depth
- most analytical methodologies rely on reference materials or calibration standards but there are only few at the nanoscale
- usage of calibrated instrumentation and knowledge on atomic data enables reference-free techniques such as SR based XRS

- 5 -

#### **FP-based XRF quantification**



#### Sherman equation for K fluorescence

$$I_{i,j} = I_0(E_k)\varepsilon_{eff}(E_{i,j})\frac{d\Omega}{4\pi} \cdot e^{-\mu_s(E_k)\rho x/\cos(\Psi_1)}$$
$$\cdot W_i \frac{r_i - 1}{r_i} \tau_i(E_k)\omega_i T_{i,j} \frac{1}{\cos(\Psi_1)}\Delta x$$
$$\cdot e^{-\mu_s(E_{i,j})\rho x/\cos(\Psi_2)}$$

instrumental parameters:  $\varepsilon_{eff}(E_{i,j}), d\Omega/4\pi$ atomic fundamental parameters:  $\mu_{s}, r_{i}, \tau, \omega_{i}, T_{i}, \rho$ specimen composition  $W_{i}$  weight fraction of element *i* 

- 6 -

absorption

fluorescence production

#### absorption



### Reference-free X-Ray Fluorescence Analysis **PB**



### XRF employing calibrated instrumentation **PB**

- 45°/45° geometry: aperture solid angle of detection
- synchr. rad.: high spectral purity -> low background in XRF and NEXAFS spectra
- incident photon flux: calibrated photo diode spectral responsivity
- fluorescence radiation: calibrated energy-dispersive detectors, e.g. Si(Li) or SDD

-> accurate spectral deconvolution and detector efficiency



### Grazing incidence geometry (TXRF, GI-XRF)

- grazing incidence -> high sensitivity at surface, nanolayers and interfaces
- characterized beam profile allows for solid angle determination
- calibrated instrumentation -> reference-free GI-XRF measurements
- X-ray Standing Wave (XSW) field have to be taken into account!





### Grazing Incidence geometry (TXRF, GI-XRF)

#### X-ray standing wave field

- constructive interference of incident and reflected beam
- varying intensity with depth can be used for depth profiling
- accurate knowledge needed for reliable quantification



Position (depth) of interference fringes depends on the angle of incidence



### X-ray standing wave field (TXRF, GI-XRF)

- calculation of the XSW field -> free codes available (e.g. IMD\*)
- XSW depends on the sample system; e.g. composition, layer thickness, etc.

PB

• iterative XSW calculations for optimization of the sample composition



### Outline



- analytical challenges for nanotechnology a motivation
- reference-free x-ray spectrometry based on synchrotron radiation
- grazing incidence x-ray fluorescence analysis
- calibration standards for sub-monolayer surface contaminations
- nanolayer analysis
- depth profiling and chemical speciation

### TXRF for surface analysis



#### Comparison of various analytical laboratories



Quantitative analysis of nickel surface contamination on 300 mm silicon wafers.

Controlled contamination by spin-coating, nominal level  $10^{12}$  at/cm<sup>2</sup>.

<u>NB:</u> The numbering of the labs and of the analytical methods is not correlated.



### Calibration of TXRF



#### Impact of droplet quality on quantification

#### **Sample information**

- 150 mm wafer
- droplets 10, 50, 100, 500, 1000 pg of Mn, Fe, Co, Zn, Ni and Zn

#### **Optical Microscopy**

- droplet size scales with Ni amount
- crystallization observed



Courtesy of Andreas Nutsch (form. IISB Erlangen)

#### Analysis by synchrotron radiation based TXRF

Characterization of calibration droplets using a small beam profile

- inhomogeneities and absorption saturation associated with calibration droplets in TXRF analysis
- different shapes of the angular scans



#### Analysis by synchrotron radiation based TXRF **PB**

Characterization of calibration droplets using a small beam profile Potential reason for deviations in results of pre-calibrated TXRF instruments Solution: reference-free validation by "lateral slicing" and "angular scanning" of droplets possible determination of correction factors



#### Reference-free analysis of a calibration droplet B

- 1 ng Ni droplet (nominal)
- radiometrically calibrated instrumentation

(PTB laboratory)

 scanning mass deposition profile with 70 µm beam

• mass in beam 69 pg ± 14 pg



#### Nanolayer Analysis



Quantification: conventional XRF vs GI-XRF

- nanolayered system, with and without buried metal layer
- the metal layer increases the XSW intensities in the B<sub>4</sub>C layer
- Objectives: > determination of the boron carbide layer thickness
  - validation of the XSW calculations



#### XRF vs GI-XRF



- UHV chamber allows for variable beam geometries: TXRF, GI-XRF and 45°/45°
- same instrumentation have been used for both XRF and GI-XRF geometry
- energy-dispersive SDD with calibrated response behavior and efficiency



### Results conventional XRF



• example: fluorescence spectrum of the sample without metal layer



### Results conventional XRF



- with Ni metal layer, tailing & shelf of Ni-L lines can cause a high background
- measurement at reduced incident x-ray energies (< Ni L edges)</li>



### Results grazing incidence XRF

PIB

- sample without metal layer
- very shallow incident angle -> only signals of top layer and contaminations
- carbon could be identified as a surface contamination



### Results grazing incidence XRF

- sample without metal layer
- TXRF angle (70 % of the critical angle of total reflection)
- optimal signal to noise ratio



B

#### Results grazing incidence XRF



- incidence angle far above the critical angle of total reflection
- increased background contribution due to RRS, bremsstrahlung and scattering
- advantage: low influence of the XSW



#### XRF and GI-XRF results (at 510 eV)



- good agreement between XRF and GI-XRF quantification
- increased relative uncertainties for GI-XRF due to XSW calculation and solid angle of detection
- basically high relative uncertainties are caused by the fundamental parameters

| reference-free<br>Quantification |        | 1 nm B₄C<br>( <mark>0.8 nm B</mark> )<br><i>nominal</i> | 3 nm B₄C<br>( <mark>2.4 nm B</mark> )<br><i>nominal</i> | 5 nm B₄C<br>( <mark>4.0 nm B)</mark><br>nominal |     |
|----------------------------------|--------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-----|
| without                          | XRF    | 0.9 ± 0.3                                               | 2.6 ± 0.7                                               | 4.2 ± 1.1                                       |     |
| metal layer                      | GI-XRF | 0.7 ± 0.3                                               | 2.0 ± 1.1                                               | 3.8 ± 1.3                                       |     |
| with 10nm                        | XRF    | 0.8 ± 0.3                                               | 2.5 ± 0.6                                               | 4.0 ± 1.0                                       |     |
| Ti layer                         | GI-XRF | 0.7 ± 0.3                                               | 2.3 ± 0.8                                               | 3.7 ± 1.2                                       |     |
| with 10nm                        | XRF    | $1.0 \pm 0.3$                                           | 2.7 ± 0.7                                               | 4.3 ± 1.1                                       |     |
| Ni layer                         | GI-XRF | 0.6 ± 0.3                                               | $1.9 \pm 1.0$                                           | 3.5 ± 1.2                                       |     |
|                                  |        |                                                         | Anal. Chem                                              | . 83, 8623-8 (20                                | )11 |

•

### High-k nanolayers and passivation

Buried passivation layer on the interface of Ge substrate and high-k nanolayer

- GeOx interface reduces the high-k quality
- preventing oxidation by passivation of Ge surface
- passivation treatment by (NH<sub>4</sub>)<sub>2</sub>S solution after removal of the native oxide layer (HF-dip)
- potential modification of the passivation by the deposition of 5 nm to 10 nm thick high-k cap

- 26 -

layer

STM image of a passivated Ge surface (50 nm x 50 nm)





IMEC / K.U. Leuven





PB

Quantification of  $Al_2O_3$  mass deposition using reference-free XRF in grazing incidence geometry



varying Al<sub>2</sub>O<sub>3</sub> layer thickness => changing XSW

- 27 -

hence measurements performed at 4° incident angle, where no XSW occurs

J. Electrochem. Soc. 158, H1090-H1096 (2011)

#### Al<sub>2</sub>O<sub>3</sub> on Ge substrate

#### IMEC & KU Leuven

- How efficient is the ALD deposition of the high-k material?
- => Determination of the mass deposition by GI-XRF

| S-<br>passiv<br>ation | high-<br>k=TMA/<br>H <sub>2</sub> O | nm   | ng/cm <sup>2</sup> |
|-----------------------|-------------------------------------|------|--------------------|
| yes                   | 1 cycle                             | 0,05 | 18                 |
| yes                   | 2 cycles                            | 0,06 | 24                 |
| yes                   | 5 cycles                            | 0,13 | 52                 |
| yes                   | 10 cycles                           | 0,33 | 132                |
| yes                   | 20 cycles                           | 0,86 | 337                |
| yes                   | 50 cycles                           | 2,5  | 985                |



linear growth on passivated Ge substrate after 2 cycles

J. Vac. Sci. Technol. A 30, 01A127-1 (2012)

#### Al<sub>2</sub>O<sub>3</sub> on InGaAs substrate

#### IMEC & KU Leuven

- How efficient is the ALD deposition of the high-k material?
- => Determination of the mass deposition by GI-XRF

| S-<br>passiv<br>ation | high-k=<br>TMA/<br>H <sub>2</sub> O | nm    | ng/cm <sup>2</sup> |
|-----------------------|-------------------------------------|-------|--------------------|
| yes                   | 1 cycle                             | 0,078 | 30,5               |
| yes                   | 2cycles                             | 0,127 | 49,8               |
| yes                   | 5cycles                             | 0,238 | 93,5               |
| yes                   | 10 cycles                           | 0,437 | 164,6              |
| yes                   | 20 cycles                           | 1,011 | 396,2              |
| yes                   | 50 cycles                           | 2,062 | 808,5              |



linear growth on passivated InGaAs substrate after the 1st cycle

J. Vac. Sci. Technol. A 30, 01A127-1 (2012)

#### Al<sub>2</sub>O<sub>3</sub> on InP substrate

#### IMEC & KU Leuven

- How efficient is the ALD deposition of the high-k material?
- What is the impact of the passivation layer on the ALD process?

| S-passiv<br>ation | high-k=<br>TMA/H <sub>2</sub> O | ng/cm <sup>2</sup> |
|-------------------|---------------------------------|--------------------|
| yes               | 1 cycle                         | 10,2               |
| yes               | 2 cycles                        | 18,4               |
| yes               | 3 cycles                        | 26,7               |
| yes               | 5 cycles                        | 44,5               |
| yes               | 10 cycles                       | 134,0              |
| yes               | 20 cycles                       | 322,6              |
| no                | 1 cycles                        | 8,0                |
| no                | 2 cycles                        | 13,7               |
| no                | 3 cycles                        | 18,8               |
| no                | 5 cycles                        | 36,6               |
| no                | 10 cycles                       | 106,6              |
| no                | 20 cycles                       | 311,6              |



• linear growth on passivated InP after 3 cycles

• impact of passivation is low

- 30 -

### Characterization of buried passivation layer **PB**

#### Al<sub>2</sub>O<sub>3</sub> on InP substrate

• What happens with the passivation layer during the high-k deposition?



### Characterization of buried passivation layer **PB**

#### Al<sub>2</sub>O<sub>3</sub> on InP Substrate

- What happens with the passivation layer during the high-k deposition?
- => XRF quantification of the S mass deposition

| Al [at/cm <sup>2</sup> ] | Al <sub>2</sub> O <sub>3</sub><br>[nm] | S<br>[at/cm²]        |
|--------------------------|----------------------------------------|----------------------|
| 5.7 10 <sup>13</sup>     | 0.007                                  | 3.6 10 <sup>14</sup> |
| 1.8 10 <sup>16</sup>     | 2.1                                    | 4.9 10 <sup>14</sup> |

 sulfur layer is stable at the interface during high-k deposition



#### Solid State Phenom. 195, p95 (2013)

# Near Edge X-ray Absorption Fine Structure (NEXAFS)

 $\pi^*$  resonances occur for unsaturated bonds (=,  $\equiv$ )

 $\pi^*$  resonances have lower energies and smaller energetic width than the  $\sigma^*$  resonances

resonance energies increase with the bond strength:  $E_{\sigma^*}(\equiv) > E_{\sigma^*}(=) > E_{\sigma^*}(-)$  $E_{\pi^*}(\equiv) > E_{\pi^*}(=)$ 



M. Katsikini & E. C. Paloura, Aristotle University of Thessaloniki

- 33 -

### **Chemical Speciation at the Interface**

#### HfO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> on Ge substrate

#### IMEC & KU Leuven

- What happens with the passivation layer during the high-k deposition?
- => Probing the binding state of sulfur at the buried interface



- oxidized sulfur species were observed after high-k deposition
- theory predicts sulfur bonds to the oxygen of the high-k metal oxides

J. Appl. Phys. 110, 084907 (2011)

### Novel cathode material for LiS-Batteries



- High theoretical specific energy density (4-5x Li-ion)
- High capacity of charging and discharging
- Low cost and abundant resources of sulfur
- Limitation: Loss of active material due to polysulfide dissolution

$$Li_{2}S \longrightarrow Li_{2}S_{2} \longrightarrow Li_{2}S_{3} \longrightarrow Li_{2}S_{4} \longrightarrow Li_{2}S_{6} \longrightarrow Li_{2}S_{8} \longrightarrow S_{8}$$

#### Approach:

 nano- and micro- porous carbon to trap sulfur inside the small pores and access of the active ions through its very high surface area

#### **Objectives material characterization:**

- 35 -

- control of intercalation of sulfur into the porous carbon matrix
- which side reactions take place, can we suppress the polysulfide shuttle



micro innovatior



#### X-ray fluorescence spectrum





Matthias Müller, PTB - 36 -

#### Initial LiS cathode material



BCP nanotemplate after carbonization

- Thickness of about 100 nm
- > Analytical Questions:
  - Degree of filling with sulfur
  - Depth distribution of sulfur
  - Chemical state of sulfur after intercalation



rforschung

FIB cross section of porous carbon

#### Initial LiS cathode material



PB



BCP nanotemplate after carbonization

- GI-XRF profile => indicates that sulfur is homogeneous distributed in depth
- elemental sulfur after intercalation has been confirmed by NEXAFS (melting at 150°)

- 38 -



FIB cross section of porous carbon



### Chemical speciation of thick cathode films **PB**

NEXAFS of a porous carbon cathode completely recharged (1 cycle)

- nearly the same structure as for the fresh cathode
- changed ratio of elemental/reduced sulfur to oxidized sulfur



### Chemical speciation of thick cathode films **PB**



- Discharged cathode shows different NEXAFS structure, similarities with polysulfide
- Recharged cathode shows nearly the same NEXAFS structure as the fresh cathode, but different ratio between S(0) and S(4+) resonance
- Potential problem: oxidation due to ambient air exposure between electrochemical and x-ray spectrometric characterization
- In-situ measurements needed for more reliable correlation

- 40 -

#### **Conclusions and Perspectives**



- fundamental parameter based quantification can reduce the dependency to appropriate reference materials
- radiometrically calibrated instrumentation allows for reference-free quantification
- grazing incidence x-ray fluorescence analysis has prove as a powerful tool for non-destructive characterization of nanoscaled materials
- tuning the angle of incidence and the x-ray energy allows to investigate buried interfaces, nanolayers and elemental depth profiles
- combined with x-ray absorption spectroscopy the chemical state can investigated in nanolayered materials
- challenge: in-situ measurements for better correlation of physical and chemical properties with the functionality of the material

- 41 -

### Acknowledgement



### Thank you for your attention

and for the provision of results: Sonja Sioncke (IMEC, Belgium) Claudia Fleischmann (form. KU Leuven, Belgium) Soumyadip Choudhury (IPF Dresden, Germany) X-Ray and IR Spectrometry group (PTB, Germany)



imec



and for financial support:



- 42 -



www.ANNA-i3.org