

2454-4

Joint ICTP-IAEA Workshop on Advanced Synchrotron Radiation Based X-ray Spectrometry Techniques

22 - 26 April 2013

SR analysis of radioactive materials

Török Szabina

KFKI Atomic energy Research Institute

Budapest

Hungary

Contents

- Radioactive problems where SR analysis provides significant contribution
- Micro-XRF and absorption spetroscopies of particles
- Sorption experiments with rocks from claystone formations, potential sites for underground high level radioactive waste
- Conclusions

The Short Wavelength Region of the Electromagnetic Spectrum

Scientists around the vacuum chamber of a 1947 General Electric synchrotron

SR was seen first at General Electric in 1947 in a different type of particle accelerator (synchrotron). It was first considered a nuisance because causing the particles to lose energy, but was then recognised in the 1960s as light with exceptional properties that overcame the shortcomings of X-ray tubes.

Initial construction of the National Synchrotron Light Source (NSLS)

Comaprison of sources

Synchrotrons

Scaled tubes

Temporal pulsed (100 ns, 1 ns)

continouous

Spatial collimated (mrad)

 4π

Polarisation linear (tunable)

unpolirased

Intensity large

small

Brightness large 10¹²-10¹⁸

small 10^8

Characteristics of sources

Most presently operational SR sources belong to the so-called second generation facilities. New third-generation storage rings obtain monoenergetic and high brilliance beams SR has a major impact on microprobe-type methods like:

- -micro-x-ray fluorescence (μ-XRF)
- -x-ray absorption spectrometry (XAS, like
- XANES and EXAFS)
- -total reflection x-ray fluorescence (TXRF)

X-ray Tomography: Overview

X-ray computed microtomography (CMT) gives 3D images of the x-ray attenuation coefficient within a sample.

At each angle, a 2D absorption image is collected. The angle is rotated around θ in 1° steps through 180°, and the 3D image is reconstructed with software.

Element-specific imaging can be done by acquiring tomograms with incident energies above and below an absorption edge.

X-ray Fluorescence Tomography

Fluorescence x-ray tomography is done with a **pencil-beam** scanned across the sample. The sample is rotated around θ and translated in **x**. Transmission x-rays can be measured as well to give an overall density tomograph.

- can collect multiple fluorescence lines,
- data collection is relatively slow,
- can be complicated by self-absorption.

G.F. Rust, and J. Weigelt IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 75, pp 14 (1998)

- A. Simionovici, et al. in *Developments in X-Ray Tomography II*, SPIE Proceedings **3772**, 304-310 (1999)
- A. Simionovici, et al, Nuclear Instruments and Methods in Physics Research A, 467-468, pp 889-892 (2001)
- C. G. Schroer, *Applied Physics Letters*, **79** (12), 1912-1914 (2001)

Simulation of heterogeneous materials: application to XRF tomography

Fluorescence Tomography: Sinograms

The Raw fluorescence tomography data consists of elemental fluorescence (uncorrected for self-absorption) as a function of position and angle: a **sinogram**. This data is reconstructed as a virtual **slice** through the sample by a coordinate transformation of $(x,\theta) \rightarrow (x, y)$. The process can be repeated at different z positions to give three-dimensional information.

Fluorescence Sinograms for Zn, Fe, and As collected simultaneously for a section of contaminated root (photo, right): \mathbf{x} : 300 μ m in 5 μ m steps $\boldsymbol{\theta}$: 180° in 3° steps

Absolute and relative XRF detection limits

300 and 1 s (dashed curve), respectively. The beam size used was 220 nm × 170 nm, 12.7 keV.

Silversmit, Anal. Chem. 2009

XAFS Characteristics

- Elemental specificity
- ❖ local atomic coordination
- * chemical state
- * works at low concentrations
- * small sample masses (even monolayers)

XANES vs EXAFS

XANES X-ray Ansorption Near-Edge Spectroscopy (0-40 eV) EXAFS Extended X-ray absorption Spectroscopy (40-1000 eV)

Transmission

- For concentrated samples, transmission is often best technique for XAFS, but proper sample preparation is required
- Want $\mu_{
 m Above} \mu_{
 m Below} = \Delta \mu \;\;
 ightarrow \; 1 < \Delta \mu < 3$
- For Fe foil Δµ=1 requires 3.7 μm thick foil!
 often solution is to make BN+sample powder pellet
- samples must be uniform without pinholes
- the grain size must be smaller than the absorption length

Fluorescence Measurements

- Concentrations down to the ppm level can be measured
- Background from other signals can dominate leading to dead time poor S/N
- Sample non-uniformity big problem (I₀ correction can fail)

X-ray Fluorescence Spectrum

Radioactive "hot" particles:

Localised aggregates of radioactive atoms resulting in inhomogeneous distribution of radionuclides significantly different from that of the matrix

Sources of radioactive particles dispersed in the environment

Nuclear fuel cycle, former authorised emissions Nuclear weapons test sites: (Nevada, US;

Maralinga, Australia; Mururoa, French Polinesia; Semipalatinsk, Kazakhstan plutonium concentrations in excess of 100,000 Bq kg⁻¹ dry soil);

Areas contaminated by crashed reactor powered satellites (Cosmos 954, Canada);

Aircraft carrying nuclear weapons (Thule,

Greenland, Palomares, Spain)

Characterisation of Radioactive Particles

- Bulk methods: α -, γ -spectroscopy, XRF
- Nuclear tracks: α-tracks, β-autoradiography, fission tracks
- hot spots related to particles: sub-samples collection.
- SEM-EDX: morphology, dimension, elemental composition of minor elements;
- micro-XRS trace analysis of selected particles
- SIMS: isotopic ratios, morphology, depth profile, Imaging (3D) and elemental composition.

Comparison of microanalytical techniques for analysis of hot particles

Technique	Projectile/ Quantum energy (keV)	Beam Size (μm)	Beam Penetration (μm)	Minimum Detection Limit (ppm)	Destructive	Calibration
EPMA	e ⁻ , 5-50	<0,1	1-10	1000	no	easy
μ -PIXE	P ⁺ , 2-3*10 ³	0,3-5	5-100	1-100	yes/no	easy
μ-SRXRF	X, 2-80	0,7-10	100-1000	0,1-100	no	easy
SIMS	M ⁺ , N ⁻ , 10-30	0,5-10	<0,1	<1	yes	difficult
LAMMA ICP	photon	20	10	0,5-5	yes	intermediate

LLD for selected radionuclides

Isotope	Sample media	LLD (mBq)*	Total nuclide content ir sample (fg)	e Method n
Pu-239	Soil (1 kg dry wt)	4	10	Alpha spectrometry
Pu-240	Biota (1 kg wet wt)	0.4	0.25	Alpha spectrometry
Pu-240	Air (300 m ³)	7	4.2	Alpha spectrometry
			(10 ag/m ³)	

*Source: Radiation risk assessment guidance (EPA, 1991)

KOSVO MICRO-XANES MEASUREMENTS OF SAMPLES

Least-square fitting of the particle spectra

Results of least squares fitting of the U-L_{III} XANES spectra of six individual soil particles

I		U(IV) (%)	U(VI) (%)	I _{w(IV)}	I _{w(VI)}	s _w (eV)	I _{s(IV)}	I _{s(VI)}	s _s (eV)	RMS error
1	K 1a	100	0	0.887	0.000	7.789	0.081	0.000	19.560	0.029
	K 1b	79	21	0.817	0.222	6.323	0.115	0.158	6.068	0.023
1	K 4a	100	0	0.763	0.000	6.882	0.048	0.000	5.967	0.019
1	K 4b	90	10	0.711	0.081	6.363	0.038	0.022	4.656	0.025
1	K 4c	92	8	0.736	0.065	6.801	0.072	0.031	5.370	0.031
1	K 4d	77	23	0.663	0.200	6.015	0.078	0.121	5.249	0.030

Measured at Hasylab

CHEMICAL AND MORPHOLOGICAL CHARACTERISATION OF KOSOVO PARTICLES

Particle	²³⁴ U		^{2 3 5} U		²³⁶ U		²³⁸ U	
N°	wt %	1 0	wt %	1 σ	wt %	1 σ	wt %	1
1	0.004	0.001	0.215	0.021	0.004	0.002	99.778	0.02
2	0.005	0.003	0.207	0.021	0.003	0.001	99.785	0.02
3	0.003	0.003	0.214	0.031	0.007	0.004	99.775	0.03
4	0.001	0.001	0.207	0.014	0.003	0.002	99.789	0.01
5	0.001	0.000	0.194	0.010	0.003	0.001	99.802	0.01
6	0.001	0.001	0.196	0.013	0.003	0.001	99.800	0.01
7	0.001	0.000	0.202	0.011	0.004	0.001	99.794	0.01
8	0.000	-	0.210	0.017	0.003	0.002	99.787	0.01
9	0.001	0.000	0.196	0.006	0.003	0.000	99.800	0.00
10	0.001	0.001	0.195	0.005	0.004	0.002	99.799	0.00
11	0.000	0.001	0.201	0.013	0.002	0.002	99.796	0.01
1 2	0.001	0.001	0.202	0.010	0.003	0.002	99.794	0.01
Avanaga	0.000		0.202		0.002		00.702	
Average	0.002		0.203		0.003		99.792	

SIMS image

Isotopic composition of individual particles

MARINE CONTAMINATION IN THE VICINITY OF SELLAFIELD

Anthropogenic radioactivity in the Irish marine environment

Sellafield

Radionuclides	Discharges			
Radionaciides	(TBq)			
Tritium	1510			
Carbon-14	8.19			
Technetium-99	3.08			
Caesium-134	0.141			
Ceasium-137	4.27			
Plutonium (alpha)	0.120			
Americium-241	0.0463			

2009 Liquid discharges

Anthropogenic radioactivity in the Irish marine environment

Irish Sea sediment core 241Am

COMPARISON OF EXPERIMENTAL AND SIMULATED XRF SPECTRA FROM A KOSOVO PARTICLE OBTAINED AT HASYLAB BEAM LINE L

μ-XRF measurements at HASYLAB

Sellafield sediment particle X-ray maps (U-content: 20 ppm) Similar distribution for Zr, Hf, Th, U Pu rich particle in sediment around Thule accident

Measured at ANKA

multilayer monochromator 23 keV

beam size 20 µm

Pu major component

Pu/U 1/3

weapon grade

Micro-XRF tomography

3D elemeloszlás Fe Sr U Pu Thule Mururoa

ANKA FLUO E_0 =21 keV, $\Delta E/E$ =0.02

Rotation: 0-360°, 6° steps

Beam size:

Thule: 11 µm

Mururoa: 19 μm

Eriksson M, Osán J, Jernström J, Wegrzynek D, Simon R, Chinea-Cano E, et al. Spectrochim. Acta B 2005, 60, 455-469

Radionuclide release in a nuclear repository

Mineralogical and geochemical characterization of BCF

	10 Å	Chlorite	Analcime	Quartz	Albite	Calcite	Dolomite	Hematite
lb-4 (510 m)	71	2		6	5	9	1	4
Ib-4 (540 m)	51	1	13		12	16		9
Delta-11	36	2		4	35	6	6	13

- Powder XRD: No significant (< 10 %) swelling clay content;</p>
- 10-20 % interstratified chlorite/smectite with 50 % swelling component in the sample Ib-4 (540 m).

- Transmission Electron Microscopy: very small hematite flanks between illite plates
- Cathodoluminescence: Delta-11 two generations of calcite and dolomite; Ib-4 one generation of calcite

Sample preparation

Thin sections:

- ■polished thin sections (ca. 40 μm) on Si wafers prepared from West Mecsek Anticline (Delta-11) and Gorica Block (Ib-4) cores
- ■thin sections prepared on in order to keep the rock intact
- ■preparation of 350 μm thick Si wafers allowing transmission mode micro-XRD measurements

■72-h sorption experiments using 0.1 M NaCl as background electrolite, concentration of added Cs(I), Ni(II), Nd(III), or U(VI) estimated using sorption modelling (10⁻⁶–10⁻³ M depending on element)

Drilled core

Thin section
On Si backing
In sample
holder

Measurement methods

Laboratory:

- ■(LV)SEM/EDX
- ■laboratory-scale micro-XRF at 50 µm resolution
 - pre-selection of areas of interest

Synchrotron radiation methods:

- ■HASYLAB Beamline L (Hamburg, Germany): combined μ-XRF/XRD/EXAFS at 20 μm resolution
- **ANKA FLUO Beamline (Karlsruhe, Germany): combined μ-XRF/XRD at 5 μm resolution**
- ■µ-XRF scanning mode: 2D distribution of elements
 - •inter-elemental correlations
 - multivariate statistical methods
 - basis for selecting positions for further investigations
- μ-XRD: crystalline phase composition at selected positions
- (μ -XAS: local environment and valence state of the element of interest)

Samples treated with Cs(I) solution

Samples treated with Cs(I) solution

0.35×0.3 mm²

0.3×0.21 mm²

Measurement: ANKA Fluo, Karlsruhe

 E_0 = 17.5 keV, 5 μ m stepsize

2D XRD images and results of azimuthal integration

- Diffraction rings related to clay minerals are clearly visible using Si backing.
- Analyses with 5 μm beam diameter: oriented microcrystals can affect quantification
- measurement: ANKA FLUO

Micro-XRF - inter-elemental correlations

IB4 treated with Ni(II) solution

Summary

- •Instrumental development is faster than research request
- •Special beam line parameters can be selected to be optimal for applications
- No need to use radioactive isotopes
- •Sensitivity comparable with present nuclear spectroscopy tools
- •Large data sets in one experiment, strategy is needed for efficient beam time use