

2456-7

Joint ICTP-IAEA Workshop on Advances in Digital Spectroscopy

6 - 10 May 2013

Gammas contd.

R. Cooper University of California, LBNL Berkeley USA

Digital Gamma-Ray Spectroscopy

Joint ICTP-IAEA Workshop on Advances in Digital Spectroscopy May 7th 2013

Ren Cooper Lawrence Berkeley National Laboratory, USA

Literature

"Radiation Detection and Measurement" Glenn Knoll

"Practical Gamma-Ray Spectrometry" Gilmore and Hemingway

"Digital Signal Processing" Proakis and Manolakis

> Lecture Notes, Helmuth Spieler www.physics.lbl.gov/~spieler

From some basic concepts to some modern applications....

- Gamma-Ray Detection: Why and How?
- Semiconductor Detectors
- Digital Electronics for Gamma-Ray Spectroscopy
- Digital Signal Processing Techniques
- \circ Applications

Gamma-Ray Detection: Why?

- Gamma rays are emitted following discrete nuclear transitions
- These transitions are defined by the structure of the decaying nucleus
- Gamma rays are penetrating and have well defined interaction kinematics

Gamma-Ray Detection: How?

- Measure the charge created in some detection medium from the interaction of gamma rays
- Collect this charge and induce an electronic signal

Ideally.....

- The amount of charge is proportional to the **<u>energy</u>** deposited
- The signal allows us to define the <u>time</u> of the event
- The evolution of the signal with time might change with **position**
- Interaction via <u>three main processes</u> (in the energy range of interest)

- Photoelectric Absorption
- Compton Scattering
- Pair Production

$$E_e = E_{\gamma} - E_{binding}$$

- Photoelectric Absorption
- Compton Scattering
- Pair Production

$$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0 c^2} (1 - \cos\theta)}$$

- Photoelectric Absorption
- Compton Scattering
- Pair Production

- Photoelectric Absorption
- Compton Scattering
- Pair Production

$$E_{e^{-}} + E_{\beta^{+}} = E_{\gamma} - 2m_0 c^2$$

 $E_{\gamma} > 1022 \ keV$

Semiconductor Detectors

Reverse biased p-n junctions

HPGe is the semiconductor detector of choice for gamma-spectroscopy

HPGe Detectors

"The workhorse of gamma-ray spectroscopy"

- Very good energy resolution (0.2 1%)
- Extremely low noise
- <u>Coaxial detectors:</u>
 - cylinder 60-80 mm diameter
 - 60-100 mm long
- Planar detectors:
 - 60-80 mm square
 - up to 20 mm thick

Segmented HPGe Detetors

Electrical segmentation of outer, charge collecting contact(s)

- Planar or coaxial geometry
- Instrument every channel
- Position sensitivity
- Count rate

Segmented HPGe Detectors

Electrical segmentation of outer, charge collecting contact(s)

- Planar or coaxial geometry
- Instrument every channel
- Position sensitivity
- Count rate

Charge transport dynamics defines signal shape

- Charge trajectory defined by electric field
- Induced signal defined by weighting potential

Electric Field

- Created by bias
- ~1000V/cm
- Defines drift velocity

$\nabla^2 V(r) = -\frac{\rho(r)}{\varepsilon_0} = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$

Weighting Potential

- Defined by geometry
- Solve Poisson equation with collecting contact at unit potential
- Other contacts at ground

Charge transport dynamics defines signal shape

- Both carriers contribute to signal
- Can have a linear e-field but non-linear signal response

Strong variation in shape of charge signal with interaction "depth"

• Typically characterised by the rise-time

The story doesn't end there.....

- The weighting potential extends out of the charge collecting strip
- The carriers are coupled to the neighbouring segments
- No net charge is collected on the neighbouring strips
- The weighing potential looks very different
- Image charges (transients) are induced

iterature: HPGe Detector	S BERKEL
Available online at www.sciencedirect.com Pr ScienceDirect Pa Nucl Nucl Progress in Particle and Nuclear Physics 60 (2008) 283–337 www.elsevier.com	rogress in rticle and lear Physics om/locate/ppnp
Review	
From Ge(Li) detectors to gamma-ray tracking an 50 years of gamma spectroscopy with germanium detectors	rays –
J. Eberth ^{a,*} , J. Simpson ^b	
^a Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany ^b STFC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK	
	Recent Developments in the
	Fabrication and Operation
	of Germanium Detectors
	Kai Vetter*
	Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550; email: kvetter@llnl.gov
	Annu. Rev. Nucl. Part. Sci. 2007. 57:363-404
	First published online as a Review in Advance on June 28, 2007
	The <i>Annual Review of Nuclear and Particle Science</i> is online at http://nucl.annualreviews.org

Why Use Digital Electronics?

So we can access more information about the physics event

A Digitised Signal

Two major components: Fast rise and slow fall

- Extract energy from the maximum pulse height
- Extract **position** from the signal <u>shape</u>
- Extract charge arrival <u>time</u> from the <u>slope</u>

Ren Cooper, Advances in Digital Spectroscopy

Application of filters in the time domain to extract the pulse height

- Signal-to-noise ratio determines the performance
- Baseline correction, pole-zero correction, and pulse shaping
- <u>Trapezoidal filtering</u> is common for HPGe develop a flat top

Jordanov et al., Nucl. Instr. and Meth. A 353 (1994)

Ren Cooper, Advances in Digital Spectroscopy

Application of filters in the time domain to extract the pulse height

- Signal-to-noise ratio determines the performance
- Baseline correction, pole-zero correction, and pulse shaping
- <u>Trapezoidal filtering</u> is common for HPGe develop a flat top

 Differentiate (baseline restore) and decay correct

 attenuate low frequency noise

$$Md(n)^{k,l} = v(n) - v(n-k) - v(n-l) + v(n+l)$$
$$d(n)^{k} = v(n) - v(n-k)$$
$$d(n)^{k,l} = d^{k}(n) - v(n-l)$$

Jordanov et al., Nucl. Instr. and Meth. A 353 (1994)

Ren Cooper, Advances in Digital Spectroscopy

Application of filters in the time domain to extract the pulse height

- Signal-to-noise ratio determines the performance
- Baseline correction, pole-zero correction, and pulse shaping
- <u>Trapezoidal filtering</u> is common for HPGe develop a flat top

 Differentiate (baseline restore) and decay correct

 attenuate low frequency noise

2. Integrate

- attenuate high frequency noise

Ren Cooper, Advances in Digital Spectroscopy

Gap Time, $\Delta t_g = l - k = 3 \ \mu s$

Application of filters in the time domain to extract the pulse height

- Signal-to-noise ratio determines the performance
- Baseline correction, pole-zero correction, and pulse shaping
- <u>Trapezoidal filtering</u> is common for HPGe develop a flat top

Ren Cooper, Advances in Digital Spectroscopy

Energy Extraction

Application of filters in the time domain to extract the pulse height

Energy Extraction

Application of filters in the time domain to extract the pulse height

Position Extraction

Extraction of signal features strongly correlated with hit position

- Parametric and/or "basis" driven approaches
- Millimeter-order resolution in large volume HPGe detectors

Ren Cooper, Advances in Digital Spectroscopy

Ren Cooper, Advances in Digital Spectroscopy

Gamma-Ray Tracking

What can we do with all this information?

- Reconstruct the sequence of the event
- Compton scattering kinematics are well defined

3!=6 permutations

 $\chi_j^2 = \sum_{n=1}^{N-1} \left(\frac{\theta_m - \theta_c}{\sigma_\theta} \right)_n^2$

- F.O.M for all permutations to find most probable sequence
- Associate multiple hits from the same event
- "Add-back" energy
- Reject "bad"/Compton escaped events
- Increased efficiency

I.Y. Lee et al., Rep. Prog. Phys. 66 (2003)

Applications: Gamma Spectroscopy

- Efficiency
 - Summing of scattered gammas
- Peak-to-background
 - Reject Compton events
- Doppler Correction

 Position of 1st hit
- Counting rate
 - Many Segments

BERKELEY LAB

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

• Event-by-event reconstruction of scattered gamma rays

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

Ren Cooper, Advances in Digital Spectroscopy

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

• Event-by-event reconstruction of scattered gamma rays

$$\cos(\theta) = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

- Potential for high sensitivity, high specificity imaging
- Applications in security, medicine, monitoring etc.
- Fusion with contextual data

Sources of Reconstruction Error:

- Position resolution (axis)
- Energy resolution (angle)
- Doppler broadening (angle)
- Incorrect sequencing (direction)

Applications: Low Background Counting

t [ns]

Noise suppression and 'background' rejection

- Maximise energy resolution, peak-to-background, and threshold
- Counting environmental samples
- Rare-event physics

Digital Gamma-Ray Spectroscopy

Joint ICTP-IAEA Workshop on Advances in Digital Spectroscopy May 7th 2013

Ren Cooper Lawrence Berkeley National Laboratory, USA

Ren Cooper, Advances in Digital Spectroscopy

Solid State Gamma-Ray Detectors

High efficiency

Scintillators and Semiconductors

Scintillation detectors usually have:

- Poorer energy resolution
- Higher density
- Higher Z
- Fast timing

Semiconductor detectors usually have:

- Better energy resolution
- Lower efficiency and "peak-to-total"

And...

- May be hard to make into big crystals
- May require cooling

Gamma-Ray Spectroscopy

(J.C1. Philippot, IEEE Trans. Nucl. Sci. NS-17/3 (1970) 446)

G.A. Armantrout, et al., IEEE Trans. Nucl. Sci. NS-19/1 (1972) 107

Energy Resolution

"Radiation Detection and Measurement", Glenn Knoll

Ren Cooper, LBNL

