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Ranging Using Time-Of-Arrival

« Time-of-arrival (TOA) is one method that can be used to perform
positioning
« Basic concept
— You must know
« When a signal was transmitted
* How fast the signal travels
« Time that the signal was received

— Then you can determine how far away you are from the signal emitter
* Foghorn example

— Assume there is a foghorn that goes off at exactly 12:00:00 noon
every day

— You know that the velocity of sound around the foghorn is 330 m/sec

— You have a device that measures the time when the foghorn blast is
received, and it says it heard a foghorn blast at 12:00:03

— What is the distance between the foghorn and the foghorn “receiver’?

— Now that you know how far you are from the foghorn, the question is,
“Where are you?”

John F. Raquet, 2012
Two-Dimensional Positioning
Using Single Range Measurement

» Range between you and the foghorn (we’ll call it foghorn #1) is
990m

Foghorn
1

« Unable to determine exact position in this case
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Two-Dimensional Ranging Using Two
Measurements

* Now, you take a
measurement from
foghorn #2 at
12:00:01.5 (for a
range of 495 m)

* Yields two potential
solutions
— How would you

determine the correct
solution?

Foghorn
2

Potential positions

John F. Raquet, 2012 6
Resolving Position Ambiguity Using Three
Measurements

* You get a third
measurement
from foghorn #3
at 12:00:01
(Range = 330 m)

— Now there's a
unigue solution

Foghorn
2

You are here!
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Receiver Clock Errors

» The foghorn example assumed that the foghorn
“receiver” had a perfectly synchronized clock, so the
measurements were perfect

* What happens if there is an unknown receiver clock
error?

» Effect on range measurement

— Without clock error
R =range

At V. = Vvelocity of sound
At = transmit/receive time difference

R = Vsound
— With clock error 6t

R =V, (At +5t)

where

R’ =range with error (pseudo -range)

John F. Raquet, 2012

Receiver Clock Errors
One-Dimensional Example (1/3)

* Now, we'll look at the foghorn example, except in only one
dimension
— The foghorn(s) and receiver are constrained to be along a line
— We want to determine the position of the receiver on that line
=}
Foghorn
1

» If the receiver measured a signal at 12:00:10, where is it on the
line?

* Now, assume an unknown clock bias 8t in the clock used by the
foghorn receiver

* Your foghorn receiver measures a foghorn blast at 12:00:10
* What can you say about where you are?
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Receiver Clock Errors
One-Dimensional Example (2/3)

* Clearly, more information is needed

* Assume that there is a second foghorn located 990 m
away from the first

990
0 500 \1000
% %
Foghorn Foghorn
1 2
* You receive a signal from the second foghorn at

12:00:09
* What can you tell about where you are at this point?

John F. Raquet, 2012 10
Receiver Clock Errors
One-Dimensional Example (3/3)

Here are the measurements we have:
Pseudorange 1=330x10 = 3300 = R
Pseudorange 2 =330x9=2970 =R,

From the pseudorange equation:

R =V, (At +8t)=  x +v,,0t=3300
R, =V, (At, +8t)=990- x +v,,,t = 2970
Rearranging terms we get
X + Vo, OF = 3300
X = Vo Ot = =1980

+ \We can then solve for the two unknowns

sound

St =8 seconds ~——Does this work?

X=660m
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Receiver Clock Errors
Extending to Three Dimensions

* In the single-dimensional case
— We needed two measurements to solve for the two unknowns, x and 6t.

— The quantities x and (990 - x) were the “distances” between the position of
the receiver and the two foghorns.

* In three-dimensional case

— We need four measurements to solve for the four unknowns, X, y, z, and
at.

— The distances between receiver and satellite are not linear equations (as
was case in single-dimensional case).

— The four equations need to be solved simultaneously, for pseudorange
measurements R,’... R,” and transmitter positions (X;,Y1,2;)...(X4.Y4:Z4):

Ry =(x =, + (y -y, + (2-2, ) + ot
2

X=X, P +(y-y, ) +(z-2,)f +cdt

(
(x=%g P +(y-ysf +(z-2z5) +cot
(

X=X4 P +(y-ys P +(z-2,f +cot

|
|
|

R,
R,
R,
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GPS Measurements (Overview)

» Each separate tracking loop typically can give 4
different measurement outputs
- Pseudorange measurement
— Carrier-phase measurement (sometimes called integrated
Doppler)
— Doppler measurement
— Carrier-to-noise density C/N,
» Actual output varies depending upon receiver
— Ashtech Z-surveyor (or Z-12) gives them all
— RCVR-3A gives just C/N,
* Note: We're talking here about raw measurements

— Almost all receivers generate navigation processor outputs
(position, velocity, heading, etc.)

13
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Measurement Rates and Timing

14

» Most receivers take measurements on all channels/
tracking loops simultaneously
— Measurements time-tagged with the receiver clock (receiver
time)
— The time at which a set of measurements is made is called a
data epoch.
» The data rate varies depending upon receiver/
application. Typical data rates:
— Static surveying: One measurement every 30 seconds (120
measurements per hour)
— Typical air, land, and marine navigation: 0.5-2
measurement per second (most common)
— Specialized high-dynamic applications: Up to 50
measurements per second (recent development)
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GPS Pseudorange Measurement
* Pseudorange is a measure of the difference in time
between signal transmission and reception
generated code
Couoiw»q moliln atty -mns Aluchm
from satelite
i l JWLI‘L
|
nmwwmw |
ﬁ J‘Lj‘l_ru_lﬂ_ﬂ,l—'L
s |
| A |
Kaplan (ed.), Underst;‘ndmg GPS: Pnnclples‘znd Applications, Artech House, 1996
John F. Raquet, 2012 16

Effect of Clock Errors on Pseudorange

» Since pseudorange is based on time difference, any clock
errors will fold directlv into nseudoranae

(Geometric range time equivalent)
- A ———

I oty | | Oteyr |
| ; } b > time
T Tet 6t Ty ut 5trcvr

Iﬂ— At + 6Ot —>|
(pseudorange nmc cquwalcnl)

» Small clock errors can result in large pseudorange errors
(since clock errors are multiplied by speed of light)

» Satellite clock errors (6ty,) are very small

— Satellites have atomic time standards

— Satellite clock corrections transmitted in navigation message
* Receiver clock (6t,,) is dominant error

Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996
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Doppler Shift

» For electromagnetic waves (which travel at the speed of light), the
received frequency f; is approximated using the standard Doppler

equation .
a fof, (1-@)

fy =received frequency (Hz)
f; = transmitted frequency (Hz)
v, = satellite - to-user relative velocity vector (m/s)
a = unit vector pointing along
line-of - sight fromuser to SV
¢ = speed of light (m/s)
— Note that v, is the (vector) velocity difference
vV, =v-u
v = velocity vector for satellite (m/s)
u = velocity vector for user (m/s)

» The Doppler shift Af is then
Af = fo — f. (H2)

17
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Doppler Measurement
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* The GPS receiver locks onto the carrier of the GPS signal and
measures the received signal frequency

— Relationship between true and measured received signal
frequency: fq
= fo. @+at

fg =truereceived signal frequency (Hz)
fs,.. =measured received signal frequency (Hz)

revr )

&, =receiver clock drift rate (sec/sec)

— Doppler measurement formed by differencing the measured
received frequency and the transmit frequency:

Af — f;

meas Rheas

— Note: transmit frequency is calculated using information about SV
clock drift rate given in navigation message
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Doppler Measurement Sign Convention

» Sign convention based on Doppler definition
— A satellite moving away from the receiver (neglecting clock errors)
will have a negative Doppler shift

< f;

fR
Af -f; <0

— Sign convention used for NovAtel (and possibly other) receivers
« Sign convention based on relationship between Doppler and
pseudorange
— Doppler is essentially a measurement of the rate of change of the
pseudorange

— A satellite moving away from the receiver (neglecting clock errors)
will have a positive Doppler measurement value

— More common sign convention for GPS receivers (Ashtech,
Trimble, and others)
« Carrier-phase measurement follows same convention as
Doppler measurement (normally)

meas

meas ~ ' Rpeas

19
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Carrier-Phase (Integrated Doppler) Measurement
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* The carrier-phase measurement ¢,.,(t) is calculated by
integrating the Doppler measurements

range(t) =J: Af oo AU+ O(t)) + §ipeger () + ClOCK errOT + Other errors

Dmeas (1)
canbe measured by receiver)

(
* The integer portion of the initial carrier-phase at the start
of the integration (¢nger(to)) is known as the “carrier-
phase integer ambiguity”

— Because of this ambiguity, the carrier-phase measurement is
not an absolute measurement of position

— Advanced processing techniques can be used to resolve these
carrier-phase ambiguites (carrier-phase ambiguity resolution)
» Alternative way of thinking: carrier-phase measurement
is the “beat frequency” between the incoming carrier
signal and receiver generated carrier.
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Phase Tracking Example
At Start of Phase Lock (Time = 0 seconds)
. _
s Arbitrary,
% unknown
e, point
¢meas (O)
¢integer (to)
(integer
ambiguity) %
(t) -
Ignoring clock and other errors
John F. Raquet, 2012 22

Phase Tracking Example
After Movement (for 1 Second)

o Arbitrary,
7/) unknown
* point

-
3

q)integer (to) q)meas (1)
(integer
ambiguity)

o(t)
S -

ﬁmmmm

Ignoring clock and other errors
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Phase Tracking Example
After Movement (for 2 Seconds)

| : Arbitrary,
% unknown
* / point

q)inte er (t )
(int(gger0 Droeas (2)

ambiguity)

(to)

J{ Al 1)

Ignoring clock and other errors

John F. Raquet, 2012 24

Comparison Between Pseudorange and Carrier-
Phase Measurements

Pseudorange Carrier-Phase
Type of measurement Range (absolute) Range (ambiguous)
Measurement precision ~1lm ~0.01m
Robustness More robust (cyclléesslfpgosg:;ible)

Necessary for
high precision
GPS
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Carrier-to-Noise Density (C/N,)

» The carrier-to-noise density is a measure of signal
strength
— The higher the C/N,, the stronger the signal (and the better
the measurements)
— Units are dB-Hz
— General rules-of-thumb:
« CIN, > 40: Very strong signal
¢ 32 < C/N, < 40: Marginal signal
* C/N, < 32: Probably losing lock
* C/N, tends to be receiver-dependent
— Can be calculated many different ways

— Absolute comparisons between receivers not very
meaningful

— Relative comparisons between measurements in a single
receiver are very meaningful

25
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Coordinate Frames

» Giving a set of three coordinates is not sufficient for
specifying a position
» Examples:
— [-1485881.48699, -5152018.35300, 3444641.84728]
— [-1.85158430, 0.57408361, 1255.323]
— [-106.08796571, 32.89256771, 1255.323]

* The coordinate frame must also be specified

— Choice of a coordinate frame is dependent upon the
application

— Most applications can use any defined coordinate frame, but

usually one will be more straightforward than others
» Primary coordinate frames used for GPS

— Earth-Centered Earth-Fixed (ECEF)
— Geodetic (Longitude - Latitude - Altitude)

27
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Earth-Centered Earth-Fixed (ECEF)
Coordinate Frame

» ECEF frame is
Cartesian (orthogonal) reference frame
It is a rotating reference frame (w.r.t. inertial space), rotating at
earth rate
Advantages

» Easy to calculate distances and vectors

between two points
» Usually computationally efficient

Disadvantages
* Not geographically intuitive

Z

28




John F. Raquet, 2012 29

Geodetic Coordinate Frame
(WGS-84 Ellipsoid)

» There are different ways to describe height (or
altitude)
— Distance above the surface of the earth

— Definition based on gravity
« Geoid: surface of constant gravitational potential
« Geoid is a function of topography, earth density variations, and earth
rotation rate
* Geodesy: study of the geoid

— Definition based upon geometry
« The geoid can be fit to an
ellipsoid (a rotated ellipse) \
» One particular ellipsoidal fit
of the geoid is called the .
WGS-84 ellipsoid E rial Plan

John F. Raquet, 2012 30

Geoid Separation

* There is a separation between the Geoid (based on
gravity) and the WGS-84 ellipsoid (based on a
mathematical model)

— Varies with user position

— Only critical if interfacing with geoid-based reference
systems (such as MSL altitude)

Map of Geoid Separation

20
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Key WGS-84 Parameters

Name Symbol  Quantity

Semi-major axis a 6378.137 km
Semi-minor axis b 6356.7523142 km
Eccentricity e 0.0818191908426
Earth rotation rate Q, 7.2921151467E-5 rad/s
Speed of light c 299792458 m/s
Gravitational parameter 3.986005E14 m3/s?
Flattening f 0.00335281066475

31

Definition of Geodetic Coordinates
(Longitude, Latitude, and Altitude)

32

» Definition of ellipsoidal height h and latitude ¢ (cross
section of earth as viewed from equatorial plane)

Equatorial

» Definition of longitude A
(view from above the
north pole)

EC A Greenwich Meridian
(0/degrees longitude)
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Geodetic Coordinate Units

* Normally, ellipsoidal altitude (h) is expressed in meters (m).

e Latitude (¢) and Longitude (\) can be expressed in different units

— Radians
« Least ambiguous, useful for programming
« Not as easily recognized geographically

— Decimal degrees
* To convert from radians to decimal degrees, multiply by 180/x
* Not very common

— Degrees and decimal minutes

* Integer number of degrees

« Decimal number of minutes (1 minute = 1/60 degree)

« Example: 46.596 decimal degrees is 46° 35.76’ (reads 46 degrees, 35.76 minutes)
— Degrees, minutes, and seconds

« Integer number of degrees

« Integer number of minutes

¢ Decimal number of seconds (1 second = 1/60 minute)

« Example: 46.596 decimal degrees is 46° 35’ 45.6”

John F. Raquet, 2012
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Determining Satellite Position

* In order to determine user position, one must calculate satellite
position
» Satellites orbits are primarily based on the Earth’s gravity field
e Other forces acting on satellite
— Gravity from sun, moon, and other planets
Atmospheric drag
Solar pressure
Torques due to Earth’s magnetic field
« Orbits are highly predictable
— Prediction accuracy degrades with time
» Orbits can be described by using a set of “orbital parameters”
— Six classic orbital parameters
— Additional parameters to handle orbit variations over time

35
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Classical Orbital Elements (1/2)

» Classical orbital elements describe

— Shape of the satellite’s orbit (and where the satellite would be on
that shape)

— Position of the orbit relative to inertial (or Earth-fixed) space
» Describing the orbit shape with a, e, and t

Perigee

b=1a’(1-¢’) -t

@
Earth at ./
focal point

» If given a specific time, you can calculate the position of the
satellite on this ellipse

36
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Classical Orbital Elements

Describing the
position and
orientation of the
orbit using Q, w, and
i

vernal equinox
direction

Bate, Mueller, and White, “Fundamentals of Astrodynamics,” Dover Publications, 1971

John F. Raquet, 2012 38
Relationship Between True, Eccentric, and Mean
Anomaly (1/2)

» True anomaly v used to directly calculate satellite
position on ellipse

» Geometrical relationship between v and eccentric
anomaly E:

v Satellite position

E \%

Earth at””
focal point
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Relationship Between True, Eccentric, and Mean
Anomaly (2/2)

* Mean anomaly M varies linearly with time (unlike E or
v), S0 it can be easily calculated
M(t) =M, +n(t-t,)
Mo =M (to)

‘/ﬂs = mean motion
a

» Eccentric anomaly and mean anomaly related
through Kepler’s equation
M =E-esinE
» Finally, true anomaly calculated from arctangent*

function, using N_e?sinE COSE -e
siny=——— COSV=—"—"—

n

V=
l-ecosE l-ecosE

*Be sure to use the 4-quadrant arctangent function (atan2 in MATLAB).

39
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Where Do We Get the Ephemeris Data?
Legacy L1 and L2 Signal Breakdown

40

» Note: 50 bps navigation message modulated on all of the codes
e L1 signal

— P(Y)-code

— CJ/A-code modulated on carrier that is 90° out of phase from P-code

carrier P(Y)-Code C/A-Code
5.(t) = Ay Y (N (1) cos(eit) + Ac, CARN (D) sin(ayt)
N (t) = 50 bps navigation message
A, = Amplitude of L1P - code signal = -163 dBW
A.,, = Amplitude of C/A-code signal =-160 dBW
w, =24,
L2 signal P(Y)-Code
— P-code only s ,(t) = A, Y ()N (t) cos(w,t)
A, =Amplitude of L2 P -code signal ~-166 dBW
w, =24f,
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Data Format of Subframes 1, 2, 3, and 5

ow e MOST GGNIICANT BT TRANGMITTED FIRST
| 208M8 € 3ECONDS »|

IQ—M!*M:—*Mrﬂtmn«ﬂc—mkﬂ«mrﬂc—mv*mr*m*m»—»’
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——rn 3| ] -1 jor
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L]
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-
.
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Obtained from SPS Signal Spec (http:/www.spacecom.af.mil/usspace/gps_support/doct PSMAIN.pdf)
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GPS Ephemeris Data
(From Navigation Message)

» For defining orbit shape and timing
t,, = Reference time of ephemeris (sec)
\Ja = Square root of semi-major axis (m“?)
e = Eccentricity
M, =Mean anomaly at time t, (rad)

» For defining orientation/position of orbit
i, =inclination at time t,, (rad)
Q, =Longitude of ascending node at t,, (rad)
@ = Argument of perigee at t,, (rad)
» Correction Terms
i =Rate of change of inclination (rad/sec)
Q =Rate of change of Q (rad/sec)
An = Mean motion correction (rad/sec)
C,.,C, = Argument of latitude correction coefficients
C,..C,, = Orbitalradius correction coefficients
C...C, =Inclination correction coefficients
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Sample Ephemeris Values
(PRN 10 - 20 Jan 1999)

prn:
week:
tOe:
sgrt_a:
e:

MO:

i0:
OmegaOl:
omega:
idot:
Omegadot:
delta_n:

10

993

266400
5.1537e+003
0.0032
-0.1952
0.9694
-0.7958
-0.2041
-3.0894e-010
-8.4571e-009
4.6345e-009

SV Clock
Correction
Terms

Cuc:
Cus:
Crc:
Crs:
Cic:
Cis:
toc:
afo:
afl:
af2:
tgd:

-3.9022e-006
2.3618e-006
339.4063
-73.9375
1.8626e-009
-3.9116e-008
266400
3.1394e-005
5.6843e-013
0
-1.8626e-009

valid: 1

43
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Calculating Satellite Position

» Set of equations for calculating SV position from
ephemeris is given in ICD-GPS-200C (Table 20-1V)
— IS-GPS-200D can be found at

www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf

— Comments

« Make sure that the correct quadrant is determined when calculating
true anomaly (use “atan2” function or equivalent)

« Output x, Y,, Z, are the ECEF coordinates of the SV antenna phase
center at time t (in the ECEF coordinate frame at time t)

44
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IS-GPS-200D: Solving for Satellite Position (1 of 4)

Variables obtained from navigation message highlighted with box: O

Table 20-IV. Elements of Coordinate Systems (sheet 1 of 2)

1= 3.986005 x 10' meters’/sec” WGS 84 value of the earth's gravitational constant for
GPS user
2 s
Q¢ =7.2921151467 x 107 rad/sec WGS 84 value of the earth's rotation rate

Semi-major axis

' . ;
np = "—\ Computed mean motion (rad/sec)
A’
=1 -@‘ Time from ephemeris reference epoch

*

t1s GPS system time at time of transmission, 1.e., GPS time corrected for transit time (range/speed of light).
Furthermore, t; shall be the actual total time difference between the time t and the epoch time t,., and must
account for beginning or end of week crossovers. That is. if ty is greater than 302.400 seconds. subtract
604.800 seconds from t,. If ty is less than -302.400 seconds. add 604.800 seconds to t.

IS-GPS-200D, 7 Dec 2004, p 97

John F. Raquet, 2012

IS-GPS-200D: Solving for Satellite Position (2 of 4)

Variables obtained from navigation message highlighted with box: O

Table 20-IV. Elements of Coordinate Systems (sheet 1 of 2)  (continued)

n=n, +[An] Corrected mean motion
My = nty Mean anomaly

. ing sli L. .
My = E; -[ebsin Ey < fsoeiigacgn:glg\;ls flgre E, Kepler's Equation for Eccentric Anomaly (may be solved

by iteration) (radians)

,[sinv For informational
vy =tan” k| <— purposes only—not True Anomaly
CoSVy needed in calculations

-1[ “ _Er’ sinE, / “ —ECOSEl )} Use four-quadrant

=tan <— arctan function
1 (cosEy —@)/ (1 -[eosE, ) (“atan2” in MATLAB)

1S-GPS-200D, 7 Dec 2004, p 97
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IS-GPS-200D: Solving for Satellite Position (3 of 4)

Variables obtained from navigation message highlighted with box: O

47

Table 20-IV. Elements of Coordinate Systems (sheet 2 of 2)
o] e+cosvy For informational )
Ep =cos™ { —r <— purposes only—not Eccentric Anomaly
l+ecosvy needed in calculations
Oy = vy —E Argument of Latitude
Suy = Eubin2®y + Eulros2d Argument of Latitude Correction
31y =[ebin2®y +fefos2® Radius Correction Second Harmonic Perturbations
Biy =[efin2®y +[c 052y Inclination Correction
u, = Oy ’@ Corrected Argument of Latitude
1 = A(1 -[EcosEy) + Oy Corrected Radius

1S-GPS-200D, 7 Dec 2004, p 98

John F. Raquet, 2012

IS-GPS-200D: Solving for Satellite Position (4 of 4)

48

Variables obtained from navigation message highlighted with box: O

Table 20-IV. Elements of Coordinate Systems (sheet 2 of 2) (continued)

i =. Siy + t Corrected Inclination

X' = 1cosu
X 7 IxCosuy L .
Vo' = rysinug } Positions in orbital plane.

Q * - Qo) - Qe Corrected longitude of ascending node.

Xx ™ Xi €08y - vy cosisingdy
Vi = Xi'sin€)y + yi'cosigcosy Earth-fixed coordinates.

7y = yy'sinig
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Solution to Kepler’'s Equation

» Kepler's equation, though simple in form, has no known closed-
form solution

— All solutions are iterative (or approximate)
¢ Newton’s method
EO = M
M -(E; —esinEj)
1-ecosE;

E'1=Ej+

* Method used in RCVR-3A software specification
E, =M +esinM
_ e(sinE; -E;cosE;)+M
1-ecoskE,

j+1

— RCVR-3A performs two iterations (i.e., stops calculating at E,)

— Don't confuse these subscripts with subscripts in ephemeris
equations!

John F. Raquet, 2012 50

Accounting for Signal Travel Time (1 of 3)

« Signal arrives at receiver after it is transmitted (due to signal
travel time)
— Transmit time: Time the signal was transmitted
— Receive time: Time the signal was received
» Satellite position should be calculated based upon transmit time
— When measuring a signal, we don't really care what happened after
that signal was transmitted
— Transmit time should be GPS system time (or as close to it as
possible)

— Very good approximate value of transmit time obtained by
subtracting pseudorange (expressed in seconds) from the receive
time as indicated by the receiver clock

¢« Why?
* What other considerations do we need to make for signal travel
time?
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Accounting for Signal Travel Time (2 of 3)

» Here’s the situation, looking down at the North Pole

* Methodology:

— Solve for position of SV at
transmit time, in ECEF

coordinates at transmit time (x, y, || [ Shr O]k
and z,) using ICD-GPS-200 Y |=|-siny cosy O}ly,
equations z 0 0 1f|z

— Rotate into ECEF reference frame

at the time of reception: 7= Qpt

prop

toron = Signal propagation time

prop

51
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Accounting for Signal Travel Time (3 of 3)

* Neglecting atmospheric delay, the signal propagation
time is calculated by

geometric range to satellite
speed of light
_ ‘ psv - prcvr‘

c
p,, = satellite ECEF position vector

P, =receiver ECEF position vector

t

prop =

* Note that the satellite position is needed to calculate
torop (@Nd vice-versa)

— Satellite position in ECEF coordinates at transmit time is
sufficiently accurate (x,, y;, and z,)

— Note that receiver position must be known
« Can be approximate

52
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Overview

Positioning Using Time-of-Arrival
GPS Receiver Measurements
Coordinate Frames

Calculation of Satellite Position
GPS Navigation Solution
Dilution of Precision

o0 kRwNPRE
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Pseudorange Equation

* The pseudorange is the sum of the true range plus the receiver
clock error

— We’'re assuming (for now) that the receiver clock error is the only
remaining error
« SV clock error has been corrected for
« All other errors are deemed negligible (or have been corrected)

P =\/(Xj_Xu)2+(yj_yu)2+(zj_zu)z +C6tu

= f(Xu’yU‘ZU‘étLI)

©; = pseudorange measurement from satellite j (m)
X;,Y;,2; = ECEF position of satellite j (m)
X,» Yy, Z, = ECEF position of user (m)

ot, =receiver clock error (sec)

« For now, only use one type of pseudorange (L1 C/A, L1 P, or L2 P)

54
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Statement of the Problem
» At a given measurement epoch, the GPS receiver
generates n pseudorange measurements (from n
different satellites)
p1=\/(xl_xu)2+(y1_yu)2+(Zl_zu)2 +C5tu
12 =\/(Xz_Xu)z"'(yz_yu)z"‘(zz_zu)z +Cot,
P =\/(X3_Xu)2+(y3_yu)2+(23_zu)2 +C(Stu
Pn =\/(Xn_Xu)2+(yn_yu)z+(zn_zu)z +C5tu
» Goal: Determine user position and clock error,
expressed in state-vector form as
Xu
X = Y
ZU
cot,
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Solving the Pseudorange Equations

The n pseudorange equations are non-linear (So no easy
solution)

Ways to solve

— Closed form solutions
« Complicated
« May not give as much insight
— lIterative techniques based on linearization
« Often using least-squares estimation
« Arguably the simplest approach
« Approach covered in this course
— Kalman filtering

< Similar to least-squares approach, except with additional ability to handle
measurements over a period of time

« Will discuss briefly
What is linearization?
— Pick a nominal (or approximate) solution
— Linearize about that point, resulting in a set of linear equations
Solve the linear equations
Will use Taylor series expansion for linearization
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Taylor Series Expansion (1/2)

» Taylor series expansion (1 variable)

df (Aa)f d*f (Aa)3d3f+

f(a+Aa) f(a)+Aada + RTY + TS
» This can be used to linearize about a certain value of the
independent variable a.
— Example: the function f (t) = 2+ 3t -6t” is a non-linear function in t
— Suppose we want to linearize about the point { = 2
— The complete Taylor series expression is

df  (At) d?f

f(+At)=f()+At—
(tan=t)+ a2 a
2
=2+3t“-6t“2+At(3-12f)+@(-12)
— To linearize, we set { = 2 and neglect higher order (non-linear)

terms of At
« Valid for perturbations (i.e., small values of At)
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Taylor Series Expansion (2/2)

58

— (Continued example) Linearized form

t
» First order Taylor series for function in two variables:

f

f(é+Aa,6+Ab)=f(é,6)+Aag— of

+Ab—]

+h.o.t.
ab|; ¢

ab

ab

10,
— Actual function
0 Op e Linearized functio
- - df (At) 3
fE+a) - f(E-2 JfAtEf = aa
= B t=2
c
=2+3(2)-6(2°) +At(3-12(2)) B2
c
=-16 - 21At -3
-4
50, 15 2 25
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Linearization of Pseudorange Equations (1/5)

» First, define a nominal state (position and clock error) as

x>

u

<>

u

x>
1

=nominal (approximate) state

N>

u

cot,

« An approximate (or expected) pseudorange can then be
calculated for satellite j

laj =\/(Xj_iu)z"'(yj_g/u)z"'(zj_iu)z+C§fu

= f(iulyu'iu’C(Sfu)

— This approximate (expected) pseudorange is the pseudorange that
we would expect to have if our position and clock error were
actually X, Y, , Z,, and cdt,.
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Linearization of Pseudorange Equations (2/5)

» Relationship between true and approximate position and time

X, = X, + AX,
Yo=Yut Ayu
z,=12,+Az,
cot, = cot, + Acdt,
— Vector form:
X, =X, +AX,

» Based on these relations, we can write
f(X,,Y,,2,,C0t,) = (X, +Ax,, ¥, +Ay,,Z, +Az,,cof, + Acdt,)

» To linearize, right-hand side of equation can be evaluated using
a first order Taylor series expansion
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Linearization of Pseudorange Equations (3/5)
» First order Taylor series expansion of pseudorange
function:
(X, +AX,, ¥, +Ay,, 2, +Az,,cof, + Acdt,) = f(X,,¥,,2,,cot,)
. of (X, yULzu,cétu) AX, + af (X,, yULZu,cétu) Ay,
axu ayu
+ af (XU7 yu’l\zuicétu) Azu + af (XU7 yu' Z’\U’C(Stu) Acétu
az, acot,
+h.o.t.
* The partial derivatives are
af()’zu’yu’iuléfu) __Xj _iu af()’zulyu’iulafu) - _ yj _yu
X, f ay, #
af(iu'S\/u’z\u'éfu)__ZJ'_iu af(iu'S\/u’iu'éfu)_l
02, f; acof,
Aj =\/(Xj _)zu)z*'(yj _yu)2+(zj _Z\U)2
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Linearization of Pseudorange Equations (4/5)

» Using above results, linearized pseudorange
equation is

. =X - z.-1,
py=hi=— AX, - ——=Ay, -——"Az, + AcSt,

i j T

» This can be simplified to Ap; =a,Ax, +a,;Ay, +a,Az, - Acdt,
where

Ap; = p; = p;

L XK T/ L bl
% P i ! 3 2
T T T
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Linearization of Pseudorange Equations (5/5)
 Original (nonlinear) equations for n measurements
L1 =\/(X1_Xu)2 +(y1_ yu)2 +(Zl_zu)2 +C6tu
P2 =\/(X2 _Xu)z +(y1_ yu)2 _"(Zl_zu)2 +C5tu
Pz =\/(X3 _Xu)2 +(y3 _yu)2 +(23_Zu)2 +C6tu
Pn =\/(Xn _Xu)z +(yn - yu)2 +(Zn _Zu)2 +C5tu
» Linearized (error) equations for the same n
measurements
Ap, =a,AX, +a,Ay, +a,Az, - Acdt,
Ap, = a,,AX, +a,Ay, +a,,Az, — AcSt,
Ap; = A%, +a,AY, +a,,Az, - Acdt,
Ap, = a,,Ax, +a,Ay, +a,,Az, - Acdt,
John F. Raquet, 2012 64

Solving the Linearized Pseudorange Equations
Using Least-Squares (1/2)

* We can express the set of pseudorange equations in matrix form

Ap = HAX
A,D1 Ay ayl a, -1 AX
Ap2 a,, ay2 a; -1 Ayu
Ap =|Ap, H=|a, a, a, -1| Ax= Azu
: : : : : u
Acot,

Apn axn ayn azn -1
e Three possible cases

— n<4:Underdetermined case
« Cannot solve for Ax
« Is there still useable information?
— n =4: Uniquely determined case
« One valid solution for Ax (generally)
* Solved by calculating H* (Ax = HAp)
— n>4: Overdetermined case
« No solution that perfectly solves equation (generally)

« Can use least-squares techniques (which pick solution that minimizes the square of the error)
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Solving the Linearized Pseudorange Equations
Using Least-Squares (2/2)

» Basic least-squares solution (no measurement weighting)
-1
Ax=(HTH)"H™ Ap

— Reasonable approach for single-point positioning in presence of SA
« Solution with measurement weighting (weighted least-squares)

— Useful when
« Measurements have different error statistics
* Measurement errors are correlated
— Measurement error covariance matrix C,
« Diagonal terms are measurement error variances
« Off-diagonal terms show cross-correlation between measurement errors

Ax=(HTCH) ' HTC Ap

— Note that this is identical to unweighted case if C, = I (identity
matrix)
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Measurement Residuals

66

» For overdetermined system, generally no valid
solution for Ax that solves measurement equation, so

Ap = HAX

» Measurement residuals (v)

— Corrections that, when applied to measurements, would
result in solution of above equation

— Least-squares minimizes the sum of squares of these
residuals

vV = Ap - HAX

Ap =HAX+V
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Iterating the Nominal State

» Linearized equations (and resulting H matrix) calculated using
nominal state X,
» Linearization valid when
— Nominal state is close to true state
— Axis “small”
o If f(u is not very accurate (i.e., Ax is large), iteration is required

— For each iteration, a new value of )“(uis calculated based upon the
old value and the corrections Ax

Xy, =X, +AX
— This new value of X, is then used to recalculate the corrections Ax
(which should be smaller this time)
» Solution must converge
— For standard GPS positioning, not much of a problem (will generally
converge with an initial guess at the center of the Earth)
— For more non-linear situations (e.g., using pseudolites), this can be
more of a problem
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Correcting for Satellite Clock Error

68

» Single point positioning only estimates receiver clock
error
— Assumes all other errors are negligible
— Requires correction of satelli
« Clock correction (from | Feor
IS-GPS-200D) At, =a; +a (t-t, )+a, (t-t, )* +At,
At, = FeJJasinE,

= p+CAt,

Peorr = Pseudorange corrected for SV clock error
p = original (raw) pseudorange measurement
At,, =SV clock correction
ag,.ay,ag,,ty =SV clock correction parameters from nav message
At, =relativity correction (since not circular orbit)
F = constant = — 4.442807633x 10 sec/(meter)"/?
e = eccentricity from nav message
Ja-= square root of semi-major axis from nav message
E, =Eccentric anomaly (from SV position calculation)
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Determining Signal Transmit Time (1/2)

» For satellite position calculation, need true GPS
transmit time of the signal (T,)

— Receiver provides time of reception according to the receiver
clock (T, + dt,,,)

— From diagram below, if the pseudorange time equivalent is
subtracted from the receive time, then the result is the true
transmit time plus the satellite clock error

PR : e
- _ (Geometric range time equivalent)
T, + Ot =T, +6t,, g
—_— P —_—l

receive time
PR = pseudorange measurement (m) | | |

| ot
PR 6ti | |_Crovr
Tu +(5trcvr - c _% =Ts E } { > & lime
receivetime t Ty T o, T, Tut Otreur

| (pscudergn-gc éﬁ{svéq;ivai‘ﬁl ) |

same as At,, from
the previous slide
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Determining Signal Transmit Time (2/2)

 Effect of neglecting ét,, for
SV positioning?

Satellite clock error can Representative SV Clock Errors

- = (GPS week seconds = 252000, week 993)
. €1
grow to up to ~1 msec: 5 g .
— Typical satellite velocity is §§ 5 ° .
3900 m/s Zo . s
— Worst-case position error S8 e et
from neglecting ot g2 9T e
03
3900 m/s x0.001s=3.9m 52 500 e
o
— Effect of neglecting ét,, < 00
« Single point positioning: Can 10 20 30
be significant (but not with SA) PRI

« Differential positioning:
effectively cancelled out (acts
like 3.9 m satellite position
error)

1The SV clock error dt,, will have a significant effect on the actual pseudorange measurement. This
page only describes the impact of d t;, on determining the position of the satellite.
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Use of Dual Frequency Measurements to Calculate
lonospheric Delay

« L1 ionospheric delay calculated by
f 2
ASiono,corrLl = (fzzfz)(pu - IOLZ)
2~ 1

AS =Llionospheric delay (m)

f,, f, =L1andL2 carrier frequencies
P, P, =L1landL2 pseudorange measurements

e L2 ionospheric delay can be calculated by
2

(1) as,

iono,corr, , f iono,corr ;

AS

* lonospheric-free pseudorange:2 ) ,
0, = P2 —YPu v = fu - I
o1y f, 60

» Multipath and measurement noise will corrupt this measurement
of ionosphere
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Correcting for Satellite Group Delay

» Each satellite has a slight time bias between the L1 and
the L2 signals

— Not desired, but it's there nonetheless

— Will affect dual-frequency users, unless it's accounted for

— Can be measured and/or calibrated out

— This calibration is accounted for when the control segment
generates the satellite clock correction terms from broadcast nav
message: a;,a;,a;,andt,

— However, this is all designed for the dual-frequency user! Single
frequency users need to remove the effect of this dual-frequency
correction on their At,, value

» Single frequency users must apply the group delay term
(TGD) from the nav message to their SV clock correction
term (from p. 90 of ICD-GPS-200C)

(Atsv )Ll = Atsv _TGD

77\
(Atsv )LZ = Atsv - (%) TGD
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Single Point Positioning Algorithm

Start with
InitiaK,,

[ 1

Calculate approximate
SV clock errors
(no relativity correction)

—% Calculate H, Ap

+7

’ Calculate Ax \

|

Calculate
transmit times

Calculate
=X, +AX

Uew

Calculate SV position
and sv clock errors

Correct pseudoranges
for SV clock error*

Is

|

~

Xy, is final solution

*include group delay correction, if a single-frequency user
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GPS Positioning Example

» We’'ll look at a single case to give an example

Situation

— Receiver measurement time (GPS week seconds): 220937

— Initial f(ui 506071.529 -4882278.667 4109624.557

[ L

15.807

Y

Initial guess of position
(in error by ~50 km)

PRN
— Measurements: 12
2
26
15
29
21
30

Pseudorange
25022759.323

22075351.532
21929350.580
22677087.545
21039894.608
24757444127
24032696.422

']
Initial clock error
expressed in m
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Example: Calculation of Transmit Time
Start with v =2, +a (t=t)+a, (t-1,)?

Inl [Ial(“ ‘approx 0 1 c 2 c
Calculate approximate . .
SV clock errors (Rece|ve tlme = 220937)
(no relativity correction) 3
Approx SV Transmit
Calculat PRN PR/c(s) Clock Error (s) Time (s)
trangn:ittj zn‘:es 12 0.083466941 -0.000359172 220936.916892231
2 0.073635447 0.000199964 220936.926164589
_ 26 0.073148440 0.000247391 220936.926604169
Calculate SV position 15 0.075642622 -0.000107130 220936.924464508
and sv clock errors 29 0.070181534 -0.000043329 220936.929861795
21 0.082581944 0.000065081 220936.917352974
Correct pseudoranges 30 0.080164446 0.000075192 220936.919760362
for SV clock error*
PR
Tu + 5trcvr -~ 6tsv = Ts
—_— C ——
receivetime
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Example: SV Position and Clock Error and
Pseudorange Correction

[ Start with ]

InitiakK, %
2
Calculate approximate 26
SV clock errors 15
(no relativity correction) 29
21
30

Calculate
transmit times

L

SV ECEF X (m)

SVECEFY (m) SVECEFZ(m) SV Clock Err(s)

-9924909.896
19519446.654
9518973.908
6420995.137
-8265550.815

-22299549.612
-18044425.181

-22418412.217 -10238600.462 -0.000359164
-12864169.870 12106498.214  0.000199964

-24465469.002

-347289.566  0.000247426
-25601178.700 -2907089.329 -0.000107131
-16497554.935 19234406.500 -0.000043326

-6458590.524 13615554.839  0.000065090

-19566072.431

-289953.964 | 0.000075168

Orbital calculations

/> + time-of-transit
Calculate SV position rotation correction 5
and sv clock erors ——— At = a; +ay (t —toc) +a (t _tOC) +At,

Y

A

for SV clock error*

Peorr =p+C(Atsv _TGD) 29

30

Correct pseudoranges PRN

Original PR (m)

—
Corrected PR (m)

25022759.323
22075351.532
21929350.580
22677087.545
21039894.608
24757444.127
24032696.422

24915088.264
22135304.471
22003529.125
22644973.532
21026908.513
24776961.101
24055233.876

Group Delay
Tgd (ns)
-12.107193470
-17.229467630
-6.519258022
-10.244548320
-8.847564459
-11.641532180
-8.381903172

*include group delay correction, if a single-frequency user
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Example: H Matrix (Iteration 1)

——>{ Calculate H,Ap |

[ -0.4182 -0.7030 -0.5752 -1

’ Calculate Ax ‘ 0.8597 -0.3609  0.3616 -1
0.4094 -0.8896 -0.2025 -1

l H= 0.2610 -0.9143  -0.3096 -1

Calculate -0.4179 -0.5533  0.7205 -1

X, =X, + AX -0.9212 -0.0637  0.3840 -1
-0.7709 -0.6102  -0.1828 -1

ECEFZ

’ Xy, is final solution ‘

LIr'IEW
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Example: Ap (Iteration 1)
—# Calculate H, Ap \ Calculated Measured
\ (corrected)
’ Calculate Ax \ ~ e
1 AIO =P = Pcorr
_ Calculate
Xy, =X, +AX
PRN Calculated PR  Measured PR Delta-Rho

Is
| Ax | small

12 24943810.919 24915088.264 28722.655
2 22117181.292 22135304.471 -18123.179

26 22013598.807 22003529.125 10069.682
15 22660408.867 22644973.532 15435.335
29 20990847.857 21026908.513 -36060.657
21 24757718.148 24776961.101 -19242.953

’ Xunew is final solution ‘ 30 24064325.866 24055233.876 9091.990
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Example: Solution and Residuals (Iteration 1)
Tyt
Ax=(HTH) H Ap
—# Calculate H, Ap \
X, =X, +AX
new old
] Calculate Ax \
l Xunew Uold AX
— Calculate 506068.143  506071.529 -3.386
X =X  +AX -4882283.665 -4882278.667 -4.998
Hoes it 4059632.252 4109624.557 -49992.305
63.927 15.807 48.120
Residuals: v =Ap-HAX
PRN \ Ap HAX
12 9.162 28722.655 28713.493
’ % is final soluti ‘ 2 1.699 -18123.179 -18124.878
u,, IS fiNal solution 26 -6.800 10069.682 10076.482
15 -0.178 15435.335 15435.513
29 4.853 -36060.657 -36065.510
21 -3.299 -19242.953 -19239.654
30 -5.436 9091.990 9097.426
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Example: H Matrix (Iterations 1 and 2)
Iteration 1 Iteration 2
| 04182 -0.7030 -0.5752 1 | 04187 -07038 -0.5739 1|
0.8597 -0.3605  0.3616 -1 0.8590 -0.3606  0.3635 -1
0.4094  -0.8896  -0.2025 -1 0.4096 -0.8900  -0.2003 -1
H=| 02610 -09143 -03096 -1 |H=| 02612 -09149 -03076 -1
04179 -0.5533  0.7205 -1 04172 -0.5524  0.7217 -1
-0.9212 -0.0637  0.3840 -1 -0.9204 -0.0636  0.3857 1
| 07709  -0.6102 -0.1828 -1 -0.7712  -0.6104 -0.1808 1

ECEFZ

ECEFZ
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Example: Ap (Iterations 1 and 2)
Iteration 1 Iteration 2
Calculated Measured Calculated Measured
\ (corrected) \ (corrected)
Ap=p—-p Ap=p—p=
/0 - 10 locorr 10 - 10 pcorr
PRN Calculated PR  Measured PR Delta-Rho | PRN Calculated PR  Measured PR Delta-Rho
12 24943810.919 24915088.264  28722.655 | 12 24915130.980 24915088.264 42.716
2 22117181.292 22135304.471 -18123.179 2 22135355.242  22135304.471 50.771
26 22013598.807 22003529.125 10069.682 | 26 22003576.788 22003529.125 47.662
15 22660408.867 22644973.532  15435.335 | 15 22645023.243  22644973.532 49.711
29 20990847.857 21026908.513  -36060.657 | 29 21026941.948 21026908.513 33.435
21 24757718.148 24776961.101 -19242.953 | 21 24777000.804 24776961.101 39.703
30 24064325.866 24055233.876 9091.990 | 30 24055278.650 24055233.876 44.773
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Example: Solution and Residuals (Iterations 1 and 2)

lteration 1 Ax = (HTH)_lHTAp

X =X +AX
w Uoid

Une
Xunew Xuold AX
506068.143  506071.529 -3.386
-4882283.665 -4882278.667 -4.998

4059632.252 4109624.557 -49992.305

63.927 15.807  48.120
Residuals: v =Ap - HAX
PRN v Ap HAX
12 9.162 28722.655 28713.493
2 1699 -18123.179 -18124.878
26 -6.800 10069682 10076.482
15 -0.178 15435335  15435.513
29 4.853 -36060.657 -36065.510
2 -3.299 -19242.953 -19239.654
30 -5.436 9091.990  9097.426

lteration 2 AX = (HTH)_lHTAP

X =X +AX
w Uoid

Une

A A

Xy X, AX
new old
506075.869  506068.143 7.726
-4882274.608 -4882283.665 9.057
4059622.275 4059632.252 -9.977
13.120 63.927  -50.807
Residuals: v =Ap - HAX
PRN v Ap HAX
12 -4.208 42.716 46.924
2 0220 50771  50.551
26 -0.248 47.662 47.910
15 2103 49711 47.609
29 -1.946 33.435 35.381
21 0431 39703 39.272
30 3.648 44.773 41.125
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Example: H Matrix (lterations 2 and 3)
Iteration 2 Iteration 3
B -0.4187 -0.7038 -0.5739 —17 B -0.4187 -0.7038 -0.5739 -17
0.8590 -0.3606 0.3635 -1 0.8590 -0.3606 0.3635 -1
0.4096 -0.8900 -0.2003 -1 0.4096 -0.8900 -0.2003 -1
H = 0.2612 -0.9149 -0.3076 -1 H = 0.2612 -0.9149 -0.3076 -1
-0.4172 -0.5524 0.7217 -1 -0.4172 -0.5524 0.7217 -1
-0.9204 -0.0636 0.3857 -1 -0.9204 -0.0636 0.3857 -1
__ -0.7712 -0.6104  -0.1808 -1 | _ -0.7712 -0.6104 -0.1808 -1 |
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Example: Ap (Iterations 2 and 3)
Iteration 2 Iteration 3
Calculated Measured Calculated Measured
(corrected) (corrected)

y

~ «
AIO =P = Peorr

PRN Calculated PR
12 24915130.980
2 22135355.242
26 22003576.788
15 22645023.243

29 21026941.948
21 24777000.804
30 24055278.650

Measured PR
24915088.264
22135304.471
22003529.125
22644973.532
21026908.513
24776961.101
24055233.876

Delta-Rho

42.716
50.771
47.662
49.711
33.435
39.703
44,773

PRN

12

26
15
29
21
30

y

AIO = /5 _locorr

e

Calculated PR Measured PR Delta-Rho

24915084.055 24915088.264 -4.208
22135304.691 22135304.471 0.220
22003528.878 22003529.125 -0.248
22644975.634 22644973.532 2.103
21026906.567 21026908.513 -1.946
24776961.532 24776961.101 0.431
24055237.525 24055233.876 3.648
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Example: Solution and Residuals (Iterations 2 and 3)

. Tog LT . Tog LT
Iteration 2 AX = (H H) H Ap Iteration 3 AX= (H H) H' Ap
X, =X, +AX X, =X, +AX
new old new old
X X AX X X AX
Unew Uold Unew Uolg
506075.869  506068.143 7.726 506075.869 506075.869 0.000
-4882274.608 -4882283.665 9.057 -4882274.608 -4882274.608 0.000
4059622.275 4059632.252 -9.977 4059622.275 4059622.275 0.000
13.120 63.927 -50.807 13.120 13.120 0.000
T
Residuals: Vv =Ap - HAX Residuals: v = Ap—HAx O" %"
PRN v Ap HAX PRN \% A_/p HAX
12 -4.208 42.716 46.924 12 -4.208 42.716 46.924
2 0220 50771  50.551 2 0.220 50.771 50.551
26 0248 47662  47.910 26 -0.248 47.662 47.910
15 2103 49711  47.609 15 2.103 49.711 47.609
29 -1.946 33435 35381 29 -1.946 33.435 35.381
21 0.431 39.703 39.272 21 0.431 39.703 39.272
30 3648 44773 41.125 10 3648 44.773 41.125
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Convergence

» Practically speaking, getting the system to converge
with GNSS is easy

— Example showed case where initial guess was 50 km in
error

— Can start with the center of the Earth as a guess, and it
would only add an iteration or two

— Normally, a receiver will use its last solution as a starting
point, so only a single iteration is necessary
* Nonlinearities (which drive the need for iteration) are
more severe when dealing with pseudolites
— Much closer to receiver than satellite
— H matrix varies more quickly as a function of position
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Overview

Positioning Using Time-of-Arrival
GPS Receiver Measurements
Coordinate Frames

Calculation of Satellite Position
GPS Navigation Solution
Dilution of Precision

o0k wNPE
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Measurement Domain vs. Position Domain

» Pseudorange errors are errors in “measurement domain”
— Errors in the measurements themselves
— UERE is one example

« Ultimately, we’d like to know errors in “position domain”
— The position errors that result when using the measurements

— Errors in position domain are different than measurement errors!
« Can be larger
« Can be smaller

— Dependent on measurement geometry
* Mathematical representation
— We have covariance matrix of measurements (C,).
— We want covariance matrix of calculated position and clock error
(€
* In GPS applications, this problem is approached using concept
called Dilution of Precision (DOP)

88
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Effect of Geometry on Positioning Accuracy
(Foghorn Example)

Consider the foghorn example, except allow for a measurement error

Good Geometry Example Poor Geometry Example
Variaton in range fing Shaded region: Locations using data
“u'ﬁ%| _— w“ :W from within indicated ecror bounds.

W“Q.'" indicated eror bounds %"‘:‘1‘:&

from foghom 1 \
User locaton 5
Foghom 1
.
. Foghom2 .
Foghom 2 Foghom 1
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Obtaining C, from Least-Squares Analysis (1/2)

. . 2
 Definition of C, %% %y xz Oxa,
o o o o
C.=| %W Yu YuZu Yudty
X o o 02 o
XuZy Yuly 2 2,0,
2
0xuétu 0yuétu c,zui‘)t“ O,

where, for example,

Giu = E|_(Xu - E[Xu])ZJ
= variance of x,

o, =El(x, ~EDx Ny, - Ely,J]
= covariance of x, and y,

Gpl 0P1Pz o Gplpn
.. 2
* Definition of C, c _|%e Gn o Oy,
P : : . o
P3Pn
o o o o’

P1Pn P2Pn P3P Pn
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Obtaining C, from Least-Squares Analysis (2/2)

« According to least-squares theory:
T~-1p4 !
C,=(H"CH)

— Basic assumptions
* Measurement errors are zero-mean
* Measurement errors have a Gaussian distribution

« Recall that the least-squares solution with measurement

weighting was L
Te-lg |ty

Ax=(HTCH] " HTC Ap

=CH'C'Ap

— Consider case where the nominal position and clock error (used to
calculate Ap) are actually the true position and clock error
« The Ap represents the measurement errors
* The Ax represents the position and clock errors
« The C, matrix is a multiplier for the measurement errors (Ap)
— “Large” C, values — large position errors
— “Small” C, values — small position errors

91

John F. Raquet, 2012

Dilution of Precision (DOP)

92

* In GPS, the concept of Dilution of Precision (DOP) is used
— Based upon covariance matrix of position and clock errors (C,)

— Additional assumptions
« All measurements have the same variance

2 2 2 2
O, =0y, =-=0, =0,

« Measurement errors are uncorrelated (i.e.,covariance values are zero)
0,, =0 ]=Kk
— Using these assumptions

and
C,=(HH)" 0

. 1. .
— The matrix (HTH) is called the DOP matrix
« Directly relates measurement errors to position errors
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Use of Local-Level Coordinate Frame (1/2)

« Normally, DOPs describe errors in geodetic (local-level) coordinate
frame (east, north, up), rather than the ECEF frame.

— Need to modify the H matrix so that the errors refer to the local-level frame

— Original H matrix (used to calculate position)

e
a 1

T
HE = a; 1
at 1

n
* “a” vectors are unit line-of-sight vectors between user and SV in ECEF frame
» This will give the C, matrix described previously

— New H matrix for DOP calculations (38"
1

GT

He - |82 1
GT

,an 1,

* “@” vectors are now unit line-of-sight vectors between user and SV in geodetic (ENU)
frame
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Use of Local-Level Coordinate Frame (2/2)

» Local-level “a” vectors can be calculated using direction cosine
matrix (DCM)
a® =Cta"
CZ =DCM that rotates from ECEF to
geodetic (E,N,U) frame
1 \T
ce =(ce)" =(ct)
T 1
« When H¢ is used to calculate the covariance C, = (HG HG) o’
then C, is defined as

O Oen Oy Ueétu

Cx _ Uen On OnZLJ Unét
Ueu Unu au Uudtu

Oest,  Onot,  Ousy, thu

— This is what we desire to describe using DOPs
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DOP Values

» Desirable to characterize the C, matrix using a single
number
— For DOPs

« Cross-correlation terms ignored
* Root-Sum-Square (RSS) value of variables of interest, normalized by o gge
« Example:

2 2 2 2
O, +0, +0, +04
y

GDOP =
OUERE
« GDOP can be calculated directly from DOP matrix
Dll D12 D13 D14

: D, D, D, D
(HeHe )" - G GDOP = /D, + D, + D, + D,,
31 32 33 34

D41 D42 D43 D44
* Note that GDOP relates UERE with RSS of errors /Key relatlonshlp!

\/092 +0.+0° +0-, =GDOPxX0ge
:
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Types of DOPs

The “Big Three” » Less common (for
— GDOP (Geometric DOP) navigators, at least!)

— VDOP (Vertical DOP)
GDOP =,/D,, + D,, + D;; + D,
Jol+0%+0) +0}, = GDOP X Ogre VDOP = D
\J0? =VDOP x e

— PDOP (Position DOP)
— TDOP (Time DOP)

TDOP = /D,,

2 2 2
Ao, +0, +0, =PDOPx0,
coon v o2, =TDOP xGyere

PDOP = /D, + D,, + Dy,

— HDOP (Horizontal DOP) « Note: time is in units of meters

HDOP = /D, + D,,

O + 07 = HDOP x 0y
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Typical DOP Plot

Dayton Ohio — 24 Apr 2003 — All Visible SVs (above 10° elevation)

B Geometrical
W Postition

W Vertical

B Horizontal
[ Time

0
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