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Area of Lipschitz discs

X metric space, e.g. Riemannian manifold

For ϕ : D → X Lipschitz define

Area(ϕ) =

∫
X
N(ϕ, x) dH 2(x),

where N(ϕ, x) = #{z ∈ D : ϕ(z) = x}.
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Filling area function for metric spaces

Remarks:
If ϕ injective then Area(ϕ) = H 2(ϕ(D)).

If X Riemannian manifold then Area(ϕ) =
∫
D J2(dzϕ)dz .

For c : S1 → X Lipschitz define

Fillarea0(c) = inf {Area(ϕ) : ϕ : D → X Lip, ϕ|S1 = c}

Definition
The filling area function (isoperimetric function) in X is

FAX
0 (r) = sup {Fillarea0(c) : L(c) ≤ r}

for r ≥ 0.Here, L(c) denotes length of c .
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FA0(r) and non-positive curvature

Examples:
1 Isoperimetric inequality in Rn for n ≥ 2:

FARn

0 (r) =
1
4π

r2 ∀r ≥ 0.

2 X 1-connected Riem. manifold of sectional curvature ≤ κ:

Theorem (Bol, Fiala, Huber, . . . )

If κ = 0 then FAM
0 (r) ≤ 1

4π
r2 for all r ≥ 0.

If κ < 0 then FAM
0 (r) ≤ |κ|− 1

2 r for all r ≥ 0.

Quadratic versus linear growth!
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Questions about FA0(r)

Questions:

1 Possible growth of FAX
0 (r) as r →∞?

For X general?
For X in a given class, e.g. nilpotent Lie groups?

2 What does growth of FAX
0 (r) tell about X?

Growth of functions:

For f , g : [0,∞)→ [0,∞) non-decreasing define

f � g if for some C > 0 and all r ≥ 0

f (r) ≤ Cg(Cr + C ) + Cr + C .

f ' g if f � g and g � f .
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Goal of lecture course

Note:
' is equivalence relation
if α, β ≥ 1 then rα ' rβ if and only if α = β

e2r ' e3r

Goal of lecture course:

Study growth of FAX
0 (r) as r →∞ using

Geometric Measure Theory in metric spaces.

Main tools:
Currents in metric spaces (Ambrosio-Kirchheim)

Differentiability of Lipschitz maps to metric spaces (Kirchheim)
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Gromov hyperbolic spaces

X geodesic metric space

Definition
X is Gromov hyperbolic if, for some δ,

every geodesic triangle in X is δ-thin.

Gromov hyperbolicity

!

coarse negative curvature
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Gromov hyperbolicity and FA0(r)

Examples:
1 X geodesic space with diamX <∞.
2 X metric tree.
3 X simply-connected Riem. manifold with secX ≤ κ < 0.
4 X := [0, 1]× R with Euclidean metric.

Theorem (Gromov)

If X is Gromov hyperbolic and FAX
0 (r) <∞ for all r ≥ 0 then

FAX
0 (r) � r .

There is a converse:

If FAX
0 (r) � r then X is Gromov hyperbolic.
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Gap in the isoperimetric spectrum

Theorem (Gromov, Bowditch, Drutu, Papasoglu, Short)

X geodesic metric space. If there exists r0 ≥ 0 such that

FAX
0 (r) ≤ 1

4000
r2

for all r ≥ r0 then X is Gromov hyperbolic. In particular,

FAX
0 (r) � r .

Consequence: No X has

rα � FAX
0 (r) � rβ

for some 1 < α ≤ β < 2.
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Gromov hyperbolicity and the sharp bound

Strengthening of Gromov’s theorem:

Theorem (W.)

X geodesic metric space. If there exist ε > 0 and r0 ≥ 0 such that

FAX
0 (r) ≤ 1− ε

4π
r2 (1)

for all r ≥ r0 then X is Gromov hyperbolic.

Remarks:
1 Theorem is optimal because FAR2

0 (r) = 1
4π r

2.
2 If (1) holds for all r ≥ 0 then X is metric tree.
3 Best known constant for Riem. manifolds was 1

16π (Gromov).
4 What if (1) holds with ε = 0?
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Borderline case ε = 0

Theorem (Lytchak-W.)

If X is proper geodesic metric space with

FAX
0 (r) ≤ 1

4π
r2

for all r ≥ 0 then X is CAT(0), i.e. has non-positive curvature.

Remark: X is CAT(0) if geodesic ∆ in X are thinner than in R2.

Example: X simply-connected Riem. manifold with secX ≤ 0.
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Back to isoperimetric spectrum

Already seen:

There is nothing between

linear and quadratic growth for FA0(r).
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Super-quadratic growth of FA0(r)

Question: Other gaps in the isoperimetric spectrum?  No!

Theorem (Grimaldi-Pansu)

Let f be smooth with f ′ > 0 and such that for every k ∈ N

f (k · r) ≥ k · f (r) for all r � 1.

If f (r) � r2 then there exists a surface of revolution M with

FAM
0 (r) ' f (r).
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Nilpotent Lie groups

G connected, 1-connected Lie group, with Lie algebra (g, [·, ·]).

Definition
G is nilpotent if ∃ k ≥ 1 (called the step of G ) with

g =: g(1) ⊃ g(2) ⊃ · · · ⊃ g(k) ⊃ g(k+1) = {0},

where

g(i+1) =
[
g(i), g

]
= span

{
[v ,w ] : v ∈ g(i),w ∈ g

}
.

G will always be endowed with left-invariant Riemannian metric d0.

Difficult open problem: What is the possible growth of FAX
0 (r) for

X = (G , d0)?
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Heisenberg groups

Example: The n-th Heisenberg group is Hn = Rn × Rn × R with

(x , y , z) ? (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′+〈x , y ′〉).

Basis of left-invariant vector fields on Hn:

Xi =
∂

∂xi
, Yi =

∂

∂yi
+ xi

∂

∂z
, Z =

∂

∂z
.

[Xi ,Yj ] = δijZ , [Xi ,Z ] = [Yj ,Z ] = 0 ⇒ Hn is nilpotent of step 2.

Proposition (Thurston)

The first Heisenberg group H1 satisfies

FAH1

0 (r) ' r3.
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Heisenberg groups

Theorem (Gromov, Allcock)

For n ≥ 2 the n-th Heisenberg group Hn satisfies

FAHn

0 (r) ' r2.
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Generalization of Thurston’s result

Theorem (Baumslag-Miller-Short, Pittet, Gersten)

If G is a free nilpotent Lie group of step k then

FAG
0 (r) ' rk+1

Example: First Heisenberg group H1 is free nilpotent.

Theorem (Gromov, Pittet, Gersten-Holt-Riley)

If G is nilpotent of step k and contains a lattice or is Carnot then

FAG
0 (r) � rk+1.
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Does FAG
0 (r) always grow exactly polynomially?

Question: If G is nilpotent does there exist n ∈ N such that

FAG
0 (r) ' rn?

Answer: No!

Theorem (W.)

There exist nilpotent Lie groups of step 2 such that

r2%(r) � FAG
0 (r) � r2 log r

for some function % with %(r)→∞ as r →∞.
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FA0(r) for nilpotent Lie groups

For nilpotent groups, FA0(r) is not well understood.
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Motivation for studying FA0(r)

Motivation 1:

Problem: Given metric spaces X and Y , how to determine whether
X and Y look ‘alike’ from far away?

Trivial observation: if X and Y are biLipschitz homeomorphic then

FAX
0 (r) ' FAY

0 (r).

Remains true if X and Y are ‘biLipschitz at large scale’ and have
bounded geometry. More precisely, . . .
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Quasi-isometries

Two metric spaces X ,Y are quasi-isometric if there exist ΓX ⊂ X
and ΓY ⊂ Y such that

∃ ψ : ΓX → ΓY bijective and biLipschitz;

ΓX , ΓY are A-separated and B-dense for some A,B > 0.
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FA0(r) is a quasi-isometry invariant

Note: X and Y quasi-isometric 6⇒ FAX
0 (r) ' FAY

0 (r).

Theorem (Gromov, Bridson)

Let M,N be the universal covers of closed Riemannian manifolds. If
M and N are quasi-isometric then

FAM
0 (r) ' FAN

0 (r).

Proof: uses adapted version of Federer-Fleming’s Deformation
theorem.
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Dehn function of a group

Motivation 2:

Let G = 〈 S | R 〉 be finitely presented group:

G ∼= F (S)/N(R),

S finite set, R ⊂ F (S) finite, F (S) free group generated by S .

Example: Z2 = 〈 a, b | aba−1b−1 〉.

Define word length of w = s1 · · · · · sn ∈ F (S) by

|w | = n.
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Dehn function of a group

For w ∈ F (S) with w =G e define ‘filling area’ of w by

A(w) = min
{
k : w =

k∏
i=1

gi r
±1
i g−1

i for some gi ∈ F (S), ri ∈ R
}
.

The Dehn function of G is defined by

δG (n) = max
{
A(w) : w ∈ F (S),w =G e, |w | ≤ n

}
.

Theorem (Gromov, Bridson)

If G is the fundamental group of a closed Riem. manifold M then

δG (n) ' FAM̃
0 (n).
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Word problem for groups

Motivation 3:

Let G be a finitely generated group, generators g1, . . . , gk .

Word:
w = g±1

j1
· · · · · g±1

jm
.

Word problem: ∃ algorithm which determines whether a given word
represents the identity in G?

Theorem
Suppose G is finitely presented and G = π1(M), where M is closed
Riemannian manifold. Let M̃ be universal cover of M. Then the
word problem in G is solvable if and only if FAM̃

0 (r) is computable.
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