Isoperimetric inequalities and the structure of metric spaces

Stefan Wenger

University of Fribourg

July 20, 2013

Overview - Part 1

1 Definition of filling area function $FA_0(r)$

- 2 Growth spectrum of $FA_0(r)$
- 3 Nilpotent Lie groups and $FA_0(r)$
- 4 Motivation for studying $FA_0(r)$

 $\begin{array}{l} \mbox{Definition of filling area function } FA_0(r) \\ \mbox{Growth spectrum of } FA_0(r) \\ \mbox{Nilpotent Lie groups and } FA_0(r) \\ \mbox{Motivation for studying } FA_0(r) \end{array}$

Area of Lipschitz discs

X metric space, e.g. Riemannian manifold

For $\varphi \colon D \to X$ Lipschitz define

$$\operatorname{Area}(arphi) = \int_X N(arphi, x) \, d\mathscr{H}^2(x),$$

where $N(\varphi, x) = \#\{z \in D : \varphi(z) = x\}.$

Filling area function for metric spaces

Remarks:

- If φ injective then Area $(\varphi) = \mathscr{H}^2(\varphi(D))$.
- If X Riemannian manifold then Area $(\varphi) = \int_D \mathbf{J}_2(d_z \varphi) dz$.

For $c \colon S^1 \to X$ Lipschitz define

$$\mathsf{Fillarea}_0(c) = \inf \left\{ \mathsf{Area}(\varphi) : \varphi \colon D \to X \mathsf{ Lip}, \varphi|_{S^1} = c \right\}$$

Definition

The filling area function (isoperimetric function) in X is

$$FA_0^X(r) = \sup \{Fillarea_0(c) : L(c) \le r\}$$

for $r \ge 0$. Here, L(c) denotes length of c.

$FA_0(r)$ and non-positive curvature

Examples:

1 Isoperimetric inequality in \mathbb{R}^n for $n \geq 2$:

$$\mathsf{FA}_0^{\mathbb{R}^n}(r) = rac{1}{4\pi}r^2 \quad orall r \geq 0.$$

2 X 1-connected Riem. manifold of sectional curvature $\leq \kappa$:

Theorem (Bol, Fiala, Huber, ...)

• If
$$\kappa = 0$$
 then $\mathsf{FA}_0^M(r) \leq \frac{1}{4\pi}r^2$ for all $r \geq 0$.

• If
$$\kappa < 0$$
 then $\mathsf{FA}_0^M(r) \le |\kappa|^{-\frac{1}{2}}r$ for all $r \ge 0$.

Quadratic versus linear growth!

 $\begin{array}{l} \mbox{Definition of filling area function } FA_0(r) \\ \mbox{Growth spectrum of } FA_0(r) \\ \mbox{Nilpotent Lie groups and } FA_0(r) \\ \mbox{Motivation for studying } FA_0(r) \end{array}$

Questions about $FA_0(r)$

Questions:

- Possible growth of $FA_0^X(r)$ as $r \to \infty$?
 - For X general?
 - For X in a given class, e.g. nilpotent Lie groups?
- **2** What does growth of $FA_0^X(r)$ tell about X?

Growth of functions:

For $f,g:[0,\infty)
ightarrow [0,\infty)$ non-decreasing define

•
$$f \preceq g$$
 if for some $C > 0$ and all $r \ge 0$
 $f(r) \le Cg(Cr + C) + Cr + C$

•
$$f \simeq g$$
 if $f \preceq g$ and $g \preceq f$.

 $\begin{array}{l} \mbox{Definition of filling area function } \mbox{FA}_0(r) \\ \mbox{Growth spectrum of } \mbox{FA}_0(r) \\ \mbox{Nilpotent Lie groups and } \mbox{FA}_0(r) \\ \mbox{Motivation for studying } \mbox{FA}_0(r) \end{array}$

Goal of lecture course

Note:

- ullet \simeq is equivalence relation
- if $\alpha, \beta \geq 1$ then $r^{\alpha} \simeq r^{\beta}$ if and only if $\alpha = \beta$

• $e^{2r} \simeq e^{3r}$

Goal of lecture course:

Study growth of $\mathsf{FA}^X_0(r)$ as $r \to \infty$ using

Geometric Measure Theory in metric spaces.

Main tools:

- Currents in metric spaces (Ambrosio-Kirchheim)
- Differentiability of Lipschitz maps to metric spaces (Kirchheim)

Gromov hyperbolic spaces

X geodesic metric space

Definition

X is Gromov hyperbolic if, for some δ ,

every geodesic triangle in X is δ -thin.

Gromov hyperbolicity

 \longleftrightarrow

coarse negative curvature

Gromov hyperbolicity and $FA_0(r)$

Examples:

- X geodesic space with diam $X < \infty$.
- 2 X metric tree.
- **3** X simply-connected Riem. manifold with $\sec_X \leq \kappa < 0$.
- $X := [0,1] \times \mathbb{R}$ with Euclidean metric.

Theorem (Gromov)

If X is Gromov hyperbolic and $\mathsf{FA}^X_0(r) < \infty$ for all $r \ge 0$ then

$$\mathsf{FA}_0^X(r) \preceq r.$$

There is a converse:

If $FA_0^X(r) \leq r$ then X is Gromov hyperbolic.

Gap in the isoperimetric spectrum

Theorem (Gromov, Bowditch, Drutu, Papasoglu, Short)

X geodesic metric space. If there exists $r_0 \ge 0$ such that

$$\mathsf{FA}_0^X(r) \le \frac{1}{4000}r^2$$

for all $r \ge r_0$ then X is Gromov hyperbolic. In particular,

 $\mathsf{FA}_0^X(r) \preceq r.$

Consequence: No X has

$$r^{lpha} \preceq \mathsf{FA}^X_0(r) \preceq r^{eta}$$

for some $1 < \alpha \leq \beta < 2$.

Gromov hyperbolicity and the sharp bound

Strengthening of Gromov's theorem:

Theorem (W.)

X geodesic metric space. If there exist $\varepsilon > 0$ and $r_0 \ge 0$ such that

$$\mathsf{FA}_0^X(r) \le \frac{1-\varepsilon}{4\pi} r^2 \tag{1}$$

for all $r \ge r_0$ then X is Gromov hyperbolic.

Remarks:

- Theorem is optimal because $FA_0^{\mathbb{R}^2}(r) = \frac{1}{4\pi}r^2$.
- 2 If (1) holds for all $r \ge 0$ then X is metric tree.
- **③** Best known constant for Riem. manifolds was $\frac{1}{16\pi}$ (Gromov).
- What if (1) holds with $\varepsilon = 0$?

Borderline case $\varepsilon = 0$

Theorem (Lytchak-W.)

If X is proper geodesic metric space with

$$\mathsf{FA}_0^X(r) \leq rac{1}{4\pi}r^2$$

for all $r \ge 0$ then X is CAT(0), i.e. has non-positive curvature.

Remark: X is CAT(0) if geodesic Δ in X are thinner than in \mathbb{R}^2 .

Example: X simply-connected Riem. manifold with $\sec_X \leq 0$.

Back to isoperimetric spectrum

Already seen:

There is nothing between

linear and quadratic growth for $FA_0(r)$.

Super-quadratic growth of $FA_0(r)$

Question: Other gaps in the isoperimetric spectrum? $\rightarrow No!$

Theorem (Grimaldi-Pansu)

Let f be smooth with f' > 0 and such that for every $k \in \mathbb{N}$

$$f(k \cdot r) \ge k \cdot f(r)$$
 for all $r \gg 1$.

If $f(r) \succeq r^2$ then there exists a surface of revolution M with $FA_0^M(r) \simeq f(r).$

Nilpotent Lie groups

G connected, 1-connected Lie group, with Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$.

Definition

G is nilpotent if $\exists k \ge 1$ (called the step of G) with

$$\mathfrak{g} =: \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(k)} \supset \mathfrak{g}^{(k+1)} = \{0\},$$

where

$$\mathfrak{g}^{(i+1)} = ig[\mathfrak{g}^{(i)},\mathfrak{g}ig] = {\sf span}\,ig\{[v,w]:v\in\mathfrak{g}^{(i)},w\in\mathfrak{g}ig\}.$$

G will always be endowed with <u>left-invariant</u> Riemannian metric d_0 . **Difficult open problem:** What is the possible growth of $FA_0^X(r)$ for $X = (G, d_0)$?

Heisenberg groups

Example: The *n*-th Heisenberg group is $H^n = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ with

$$(x, y, z) \star (x', y', z') = (x + x', y + y', z + z' + \langle x, y' \rangle)$$

Basis of left-invariant vector fields on H^n :

$$X_i = \frac{\partial}{\partial x_i}, \quad Y_i = \frac{\partial}{\partial y_i} + x_i \frac{\partial}{\partial z}, \quad Z = \frac{\partial}{\partial z}.$$

 $[X_i, Y_j] = \delta_{ij}Z$, $[X_i, Z] = [Y_j, Z] = 0 \Rightarrow H^n$ is nilpotent of step 2.

Proposition (Thurston)

The first Heisenberg group H^1 satisfies

$$\mathsf{FA}_0^{H^1}(r) \simeq r^3.$$

Heisenberg groups

Theorem (Gromov, Allcock)

For $n \ge 2$ the n-th Heisenberg group H^n satisfies

 $\mathsf{FA}_0^{H^n}(r) \simeq r^2.$

Generalization of Thurston's result

Theorem (Baumslag-Miller-Short, Pittet, Gersten)

If G is a free nilpotent Lie group of step k then

 $\mathsf{FA}_0^G(r)\simeq r^{k+1}$

Example: First Heisenberg group H^1 is free nilpotent.

Theorem (Gromov, Pittet, Gersten-Holt-Riley)

If G is nilpotent of step k and contains a lattice or is Carnot then

 $\mathsf{FA}_0^G(r) \preceq r^{k+1}.$

Does $FA_0^G(r)$ always grow exactly polynomially?

Question: If G is nilpotent does there exist $n \in \mathbb{N}$ such that

 $FA_0^G(r) \simeq r^n$?

Answer: No!

Theorem (W.)

There exist nilpotent Lie groups of step 2 such that

 $r^2 \varrho(r) \preceq \mathsf{FA}_0^G(r) \preceq r^2 \log r$

for some function ρ with $\rho(r) \to \infty$ as $r \to \infty$.

 $FA_0(r)$ for nilpotent Lie groups

For nilpotent groups, $FA_0(r)$ is not well understood.

Motivation for studying $FA_0(r)$

Motivation 1:

<u>Problem</u>: Given metric spaces X and Y, how to determine whether X and Y look 'alike' from far away?

Trivial observation: if X and Y are biLipschitz homeomorphic then

$$\mathsf{FA}_0^X(r)\simeq\mathsf{FA}_0^Y(r).$$

Remains true if X and Y are 'biLipschitz at large scale' and have bounded geometry. More precisely, . . .

Quasi-isometries

Two metric spaces X, Y are <u>quasi-isometric</u> if there exist $\Gamma_X \subset X$ and $\Gamma_Y \subset Y$ such that

- $\exists \psi : \Gamma_X \to \Gamma_Y$ bijective and biLipschitz;
- Γ_X , Γ_Y are A-separated and B-dense for some A, B > 0.

 $FA_0(r)$ is a quasi-isometry invariant

Note: X and Y quasi-isometric \Rightarrow FA₀^X(r) \simeq FA₀^Y(r).

Theorem (Gromov, Bridson)

Let M, N be the universal covers of closed Riemannian manifolds. If M and N are quasi-isometric then

 $\mathsf{FA}_0^M(r) \simeq \mathsf{FA}_0^N(r).$

Proof: uses adapted version of Federer-Fleming's Deformation theorem.

Dehn function of a group

Motivation 2:

Let $G = \langle S | R \rangle$ be finitely presented group:

 $G \cong F(S)/N(R),$

S finite set, $R \subset F(S)$ finite, F(S) free group generated by S.

Example: $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$.

Define word length of $w = s_1 \cdot \cdots \cdot s_n \in F(S)$ by

$$|w| = n.$$

Dehn function of a group

For $w \in F(S)$ with $w =_G e$ define 'filling area' of w by

$$\mathsf{A}(w) = \min\Big\{k : w = \prod_{i=1}^{k} g_i r_i^{\pm 1} g_i^{-1} \text{ for some } g_i \in F(S), r_i \in R\Big\}.$$

The <u>Dehn function</u> of G is defined by

$$\delta_G(n) = \max \big\{ \mathsf{A}(w) : w \in F(S), w =_G e, |w| \leq n \big\}.$$

Theorem (Gromov, Bridson)

If G is the fundamental group of a closed Riem. manifold M then

$$\delta_G(n) \simeq \mathsf{FA}_0^{\tilde{M}}(n).$$

Word problem for groups

Motivation 3:

Let G be a finitely generated group, generators g_1, \ldots, g_k .

Word:

$$w=g_{j_1}^{\pm 1}\cdot \cdots \cdot g_{j_m}^{\pm 1}.$$

<u>Word problem</u>: \exists algorithm which determines whether a given word represents the identity in *G*?

Theorem

Suppose G is finitely presented and $G = \pi_1(M)$, where M is closed Riemannian manifold. Let \tilde{M} be universal cover of M. Then the word problem in G is solvable if and only if $FA_0^{\tilde{M}}(r)$ is computable.